Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

300\times 2=n\left(n+1\right)
Multiply both sides by 2.
600=n\left(n+1\right)
Multiply 300 and 2 to get 600.
600=n^{2}+n
Use the distributive property to multiply n by n+1.
n^{2}+n=600
Swap sides so that all variable terms are on the left hand side.
n^{2}+n-600=0
Subtract 600 from both sides.
n=\frac{-1±\sqrt{1^{2}-4\left(-600\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 1 for b, and -600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-1±\sqrt{1-4\left(-600\right)}}{2}
Square 1.
n=\frac{-1±\sqrt{1+2400}}{2}
Multiply -4 times -600.
n=\frac{-1±\sqrt{2401}}{2}
Add 1 to 2400.
n=\frac{-1±49}{2}
Take the square root of 2401.
n=\frac{48}{2}
Now solve the equation n=\frac{-1±49}{2} when ± is plus. Add -1 to 49.
n=24
Divide 48 by 2.
n=-\frac{50}{2}
Now solve the equation n=\frac{-1±49}{2} when ± is minus. Subtract 49 from -1.
n=-25
Divide -50 by 2.
n=24 n=-25
The equation is now solved.
300\times 2=n\left(n+1\right)
Multiply both sides by 2.
600=n\left(n+1\right)
Multiply 300 and 2 to get 600.
600=n^{2}+n
Use the distributive property to multiply n by n+1.
n^{2}+n=600
Swap sides so that all variable terms are on the left hand side.
n^{2}+n+\left(\frac{1}{2}\right)^{2}=600+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+n+\frac{1}{4}=600+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}+n+\frac{1}{4}=\frac{2401}{4}
Add 600 to \frac{1}{4}.
\left(n+\frac{1}{2}\right)^{2}=\frac{2401}{4}
Factor n^{2}+n+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{1}{2}\right)^{2}}=\sqrt{\frac{2401}{4}}
Take the square root of both sides of the equation.
n+\frac{1}{2}=\frac{49}{2} n+\frac{1}{2}=-\frac{49}{2}
Simplify.
n=24 n=-25
Subtract \frac{1}{2} from both sides of the equation.