Solve for z
z=-\frac{13}{30}\approx -0.433333333
z=0
Share
Copied to clipboard
z\left(30z+13\right)=0
Factor out z.
z=0 z=-\frac{13}{30}
To find equation solutions, solve z=0 and 30z+13=0.
30z^{2}+13z=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-13±\sqrt{13^{2}}}{2\times 30}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 30 for a, 13 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-13±13}{2\times 30}
Take the square root of 13^{2}.
z=\frac{-13±13}{60}
Multiply 2 times 30.
z=\frac{0}{60}
Now solve the equation z=\frac{-13±13}{60} when ± is plus. Add -13 to 13.
z=0
Divide 0 by 60.
z=-\frac{26}{60}
Now solve the equation z=\frac{-13±13}{60} when ± is minus. Subtract 13 from -13.
z=-\frac{13}{30}
Reduce the fraction \frac{-26}{60} to lowest terms by extracting and canceling out 2.
z=0 z=-\frac{13}{30}
The equation is now solved.
30z^{2}+13z=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{30z^{2}+13z}{30}=\frac{0}{30}
Divide both sides by 30.
z^{2}+\frac{13}{30}z=\frac{0}{30}
Dividing by 30 undoes the multiplication by 30.
z^{2}+\frac{13}{30}z=0
Divide 0 by 30.
z^{2}+\frac{13}{30}z+\left(\frac{13}{60}\right)^{2}=\left(\frac{13}{60}\right)^{2}
Divide \frac{13}{30}, the coefficient of the x term, by 2 to get \frac{13}{60}. Then add the square of \frac{13}{60} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}+\frac{13}{30}z+\frac{169}{3600}=\frac{169}{3600}
Square \frac{13}{60} by squaring both the numerator and the denominator of the fraction.
\left(z+\frac{13}{60}\right)^{2}=\frac{169}{3600}
Factor z^{2}+\frac{13}{30}z+\frac{169}{3600}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z+\frac{13}{60}\right)^{2}}=\sqrt{\frac{169}{3600}}
Take the square root of both sides of the equation.
z+\frac{13}{60}=\frac{13}{60} z+\frac{13}{60}=-\frac{13}{60}
Simplify.
z=0 z=-\frac{13}{30}
Subtract \frac{13}{60} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}