Solve for x
x=\sqrt{6}+5\approx 7.449489743
x=5-\sqrt{6}\approx 2.550510257
Graph
Share
Copied to clipboard
-3x^{2}+30x=57
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-3x^{2}+30x-57=57-57
Subtract 57 from both sides of the equation.
-3x^{2}+30x-57=0
Subtracting 57 from itself leaves 0.
x=\frac{-30±\sqrt{30^{2}-4\left(-3\right)\left(-57\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 30 for b, and -57 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\left(-3\right)\left(-57\right)}}{2\left(-3\right)}
Square 30.
x=\frac{-30±\sqrt{900+12\left(-57\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-30±\sqrt{900-684}}{2\left(-3\right)}
Multiply 12 times -57.
x=\frac{-30±\sqrt{216}}{2\left(-3\right)}
Add 900 to -684.
x=\frac{-30±6\sqrt{6}}{2\left(-3\right)}
Take the square root of 216.
x=\frac{-30±6\sqrt{6}}{-6}
Multiply 2 times -3.
x=\frac{6\sqrt{6}-30}{-6}
Now solve the equation x=\frac{-30±6\sqrt{6}}{-6} when ± is plus. Add -30 to 6\sqrt{6}.
x=5-\sqrt{6}
Divide -30+6\sqrt{6} by -6.
x=\frac{-6\sqrt{6}-30}{-6}
Now solve the equation x=\frac{-30±6\sqrt{6}}{-6} when ± is minus. Subtract 6\sqrt{6} from -30.
x=\sqrt{6}+5
Divide -30-6\sqrt{6} by -6.
x=5-\sqrt{6} x=\sqrt{6}+5
The equation is now solved.
-3x^{2}+30x=57
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+30x}{-3}=\frac{57}{-3}
Divide both sides by -3.
x^{2}+\frac{30}{-3}x=\frac{57}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-10x=\frac{57}{-3}
Divide 30 by -3.
x^{2}-10x=-19
Divide 57 by -3.
x^{2}-10x+\left(-5\right)^{2}=-19+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-19+25
Square -5.
x^{2}-10x+25=6
Add -19 to 25.
\left(x-5\right)^{2}=6
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{6}
Take the square root of both sides of the equation.
x-5=\sqrt{6} x-5=-\sqrt{6}
Simplify.
x=\sqrt{6}+5 x=5-\sqrt{6}
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}