Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

10\left(3x^{4}+7x^{3}-12x^{2}-28x\right)
Factor out 10.
x\left(3x^{3}+7x^{2}-12x-28\right)
Consider 3x^{4}+7x^{3}-12x^{2}-28x. Factor out x.
x^{2}\left(3x+7\right)-4\left(3x+7\right)
Consider 3x^{3}+7x^{2}-12x-28. Do the grouping 3x^{3}+7x^{2}-12x-28=\left(3x^{3}+7x^{2}\right)+\left(-12x-28\right), and factor out x^{2} in the first and -4 in the second group.
\left(3x+7\right)\left(x^{2}-4\right)
Factor out common term 3x+7 by using distributive property.
\left(x-2\right)\left(x+2\right)
Consider x^{2}-4. Rewrite x^{2}-4 as x^{2}-2^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
10x\left(3x+7\right)\left(x-2\right)\left(x+2\right)
Rewrite the complete factored expression.