Solve for t
t=\frac{-149+\sqrt{299}i}{15}\approx -9.933333333+1.152774431i
t=\frac{-\sqrt{299}i-149}{15}\approx -9.933333333-1.152774431i
Share
Copied to clipboard
30t=225\left(t^{2}+20t+100\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(t+10\right)^{2}.
30t=225t^{2}+4500t+22500
Use the distributive property to multiply 225 by t^{2}+20t+100.
30t-225t^{2}=4500t+22500
Subtract 225t^{2} from both sides.
30t-225t^{2}-4500t=22500
Subtract 4500t from both sides.
-4470t-225t^{2}=22500
Combine 30t and -4500t to get -4470t.
-4470t-225t^{2}-22500=0
Subtract 22500 from both sides.
-225t^{2}-4470t-22500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-4470\right)±\sqrt{\left(-4470\right)^{2}-4\left(-225\right)\left(-22500\right)}}{2\left(-225\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -225 for a, -4470 for b, and -22500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-4470\right)±\sqrt{19980900-4\left(-225\right)\left(-22500\right)}}{2\left(-225\right)}
Square -4470.
t=\frac{-\left(-4470\right)±\sqrt{19980900+900\left(-22500\right)}}{2\left(-225\right)}
Multiply -4 times -225.
t=\frac{-\left(-4470\right)±\sqrt{19980900-20250000}}{2\left(-225\right)}
Multiply 900 times -22500.
t=\frac{-\left(-4470\right)±\sqrt{-269100}}{2\left(-225\right)}
Add 19980900 to -20250000.
t=\frac{-\left(-4470\right)±30\sqrt{299}i}{2\left(-225\right)}
Take the square root of -269100.
t=\frac{4470±30\sqrt{299}i}{2\left(-225\right)}
The opposite of -4470 is 4470.
t=\frac{4470±30\sqrt{299}i}{-450}
Multiply 2 times -225.
t=\frac{4470+30\sqrt{299}i}{-450}
Now solve the equation t=\frac{4470±30\sqrt{299}i}{-450} when ± is plus. Add 4470 to 30i\sqrt{299}.
t=\frac{-\sqrt{299}i-149}{15}
Divide 4470+30i\sqrt{299} by -450.
t=\frac{-30\sqrt{299}i+4470}{-450}
Now solve the equation t=\frac{4470±30\sqrt{299}i}{-450} when ± is minus. Subtract 30i\sqrt{299} from 4470.
t=\frac{-149+\sqrt{299}i}{15}
Divide 4470-30i\sqrt{299} by -450.
t=\frac{-\sqrt{299}i-149}{15} t=\frac{-149+\sqrt{299}i}{15}
The equation is now solved.
30t=225\left(t^{2}+20t+100\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(t+10\right)^{2}.
30t=225t^{2}+4500t+22500
Use the distributive property to multiply 225 by t^{2}+20t+100.
30t-225t^{2}=4500t+22500
Subtract 225t^{2} from both sides.
30t-225t^{2}-4500t=22500
Subtract 4500t from both sides.
-4470t-225t^{2}=22500
Combine 30t and -4500t to get -4470t.
-225t^{2}-4470t=22500
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-225t^{2}-4470t}{-225}=\frac{22500}{-225}
Divide both sides by -225.
t^{2}+\left(-\frac{4470}{-225}\right)t=\frac{22500}{-225}
Dividing by -225 undoes the multiplication by -225.
t^{2}+\frac{298}{15}t=\frac{22500}{-225}
Reduce the fraction \frac{-4470}{-225} to lowest terms by extracting and canceling out 15.
t^{2}+\frac{298}{15}t=-100
Divide 22500 by -225.
t^{2}+\frac{298}{15}t+\left(\frac{149}{15}\right)^{2}=-100+\left(\frac{149}{15}\right)^{2}
Divide \frac{298}{15}, the coefficient of the x term, by 2 to get \frac{149}{15}. Then add the square of \frac{149}{15} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{298}{15}t+\frac{22201}{225}=-100+\frac{22201}{225}
Square \frac{149}{15} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{298}{15}t+\frac{22201}{225}=-\frac{299}{225}
Add -100 to \frac{22201}{225}.
\left(t+\frac{149}{15}\right)^{2}=-\frac{299}{225}
Factor t^{2}+\frac{298}{15}t+\frac{22201}{225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{149}{15}\right)^{2}}=\sqrt{-\frac{299}{225}}
Take the square root of both sides of the equation.
t+\frac{149}{15}=\frac{\sqrt{299}i}{15} t+\frac{149}{15}=-\frac{\sqrt{299}i}{15}
Simplify.
t=\frac{-149+\sqrt{299}i}{15} t=\frac{-\sqrt{299}i-149}{15}
Subtract \frac{149}{15} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}