Solve for k
k=\frac{1}{6m}
m\neq 0
Solve for m
m=\frac{1}{6k}
k\neq 0
Share
Copied to clipboard
30mk=5
The equation is in standard form.
\frac{30mk}{30m}=\frac{5}{30m}
Divide both sides by 30m.
k=\frac{5}{30m}
Dividing by 30m undoes the multiplication by 30m.
k=\frac{1}{6m}
Divide 5 by 30m.
30km=5
The equation is in standard form.
\frac{30km}{30k}=\frac{5}{30k}
Divide both sides by 30k.
m=\frac{5}{30k}
Dividing by 30k undoes the multiplication by 30k.
m=\frac{1}{6k}
Divide 5 by 30k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}