Solve for a
a\geq -470
Share
Copied to clipboard
30a+2800-40a\leq 7500
Use the distributive property to multiply 40 by 70-a.
-10a+2800\leq 7500
Combine 30a and -40a to get -10a.
-10a\leq 7500-2800
Subtract 2800 from both sides.
-10a\leq 4700
Subtract 2800 from 7500 to get 4700.
a\geq \frac{4700}{-10}
Divide both sides by -10. Since -10 is negative, the inequality direction is changed.
a\geq -470
Divide 4700 by -10 to get -470.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}