Solve for x
x = \frac{7}{6} = 1\frac{1}{6} \approx 1.166666667
x=-2
x = -\frac{14}{5} = -2\frac{4}{5} = -2.8
Graph
Share
Copied to clipboard
30x^{3}+109x^{2}-196=0
Subtract 196 from both sides.
±\frac{98}{15},±\frac{196}{15},±\frac{98}{5},±\frac{98}{3},±\frac{196}{5},±\frac{196}{3},±98,±196,±\frac{49}{15},±\frac{49}{5},±\frac{49}{3},±49,±\frac{49}{30},±\frac{49}{10},±\frac{49}{6},±\frac{49}{2},±\frac{14}{15},±\frac{28}{15},±\frac{14}{5},±\frac{14}{3},±\frac{28}{5},±\frac{28}{3},±14,±28,±\frac{7}{15},±\frac{7}{5},±\frac{7}{3},±7,±\frac{7}{30},±\frac{7}{10},±\frac{7}{6},±\frac{7}{2},±\frac{2}{15},±\frac{4}{15},±\frac{2}{5},±\frac{2}{3},±\frac{4}{5},±\frac{4}{3},±2,±4,±\frac{1}{15},±\frac{1}{5},±\frac{1}{3},±1,±\frac{1}{30},±\frac{1}{10},±\frac{1}{6},±\frac{1}{2}
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -196 and q divides the leading coefficient 30. List all candidates \frac{p}{q}.
x=-2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
30x^{2}+49x-98=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 30x^{3}+109x^{2}-196 by x+2 to get 30x^{2}+49x-98. Solve the equation where the result equals to 0.
x=\frac{-49±\sqrt{49^{2}-4\times 30\left(-98\right)}}{2\times 30}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 30 for a, 49 for b, and -98 for c in the quadratic formula.
x=\frac{-49±119}{60}
Do the calculations.
x=-\frac{14}{5} x=\frac{7}{6}
Solve the equation 30x^{2}+49x-98=0 when ± is plus and when ± is minus.
x=-2 x=-\frac{14}{5} x=\frac{7}{6}
List all found solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}