Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

6\left(5x^{2}-41x-36\right)
Factor out 6.
a+b=-41 ab=5\left(-36\right)=-180
Consider 5x^{2}-41x-36. Factor the expression by grouping. First, the expression needs to be rewritten as 5x^{2}+ax+bx-36. To find a and b, set up a system to be solved.
1,-180 2,-90 3,-60 4,-45 5,-36 6,-30 9,-20 10,-18 12,-15
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -180.
1-180=-179 2-90=-88 3-60=-57 4-45=-41 5-36=-31 6-30=-24 9-20=-11 10-18=-8 12-15=-3
Calculate the sum for each pair.
a=-45 b=4
The solution is the pair that gives sum -41.
\left(5x^{2}-45x\right)+\left(4x-36\right)
Rewrite 5x^{2}-41x-36 as \left(5x^{2}-45x\right)+\left(4x-36\right).
5x\left(x-9\right)+4\left(x-9\right)
Factor out 5x in the first and 4 in the second group.
\left(x-9\right)\left(5x+4\right)
Factor out common term x-9 by using distributive property.
6\left(x-9\right)\left(5x+4\right)
Rewrite the complete factored expression.
30x^{2}-246x-216=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-246\right)±\sqrt{\left(-246\right)^{2}-4\times 30\left(-216\right)}}{2\times 30}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-246\right)±\sqrt{60516-4\times 30\left(-216\right)}}{2\times 30}
Square -246.
x=\frac{-\left(-246\right)±\sqrt{60516-120\left(-216\right)}}{2\times 30}
Multiply -4 times 30.
x=\frac{-\left(-246\right)±\sqrt{60516+25920}}{2\times 30}
Multiply -120 times -216.
x=\frac{-\left(-246\right)±\sqrt{86436}}{2\times 30}
Add 60516 to 25920.
x=\frac{-\left(-246\right)±294}{2\times 30}
Take the square root of 86436.
x=\frac{246±294}{2\times 30}
The opposite of -246 is 246.
x=\frac{246±294}{60}
Multiply 2 times 30.
x=\frac{540}{60}
Now solve the equation x=\frac{246±294}{60} when ± is plus. Add 246 to 294.
x=9
Divide 540 by 60.
x=-\frac{48}{60}
Now solve the equation x=\frac{246±294}{60} when ± is minus. Subtract 294 from 246.
x=-\frac{4}{5}
Reduce the fraction \frac{-48}{60} to lowest terms by extracting and canceling out 12.
30x^{2}-246x-216=30\left(x-9\right)\left(x-\left(-\frac{4}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 9 for x_{1} and -\frac{4}{5} for x_{2}.
30x^{2}-246x-216=30\left(x-9\right)\left(x+\frac{4}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
30x^{2}-246x-216=30\left(x-9\right)\times \frac{5x+4}{5}
Add \frac{4}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
30x^{2}-246x-216=6\left(x-9\right)\left(5x+4\right)
Cancel out 5, the greatest common factor in 30 and 5.