Solve for x
x = \frac{\sqrt{19369} - 13}{60} \approx 2.102875913
x=\frac{-\sqrt{19369}-13}{60}\approx -2.536209246
Graph
Share
Copied to clipboard
30x^{2}+13x-160=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-13±\sqrt{13^{2}-4\times 30\left(-160\right)}}{2\times 30}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 30 for a, 13 for b, and -160 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\times 30\left(-160\right)}}{2\times 30}
Square 13.
x=\frac{-13±\sqrt{169-120\left(-160\right)}}{2\times 30}
Multiply -4 times 30.
x=\frac{-13±\sqrt{169+19200}}{2\times 30}
Multiply -120 times -160.
x=\frac{-13±\sqrt{19369}}{2\times 30}
Add 169 to 19200.
x=\frac{-13±\sqrt{19369}}{60}
Multiply 2 times 30.
x=\frac{\sqrt{19369}-13}{60}
Now solve the equation x=\frac{-13±\sqrt{19369}}{60} when ± is plus. Add -13 to \sqrt{19369}.
x=\frac{-\sqrt{19369}-13}{60}
Now solve the equation x=\frac{-13±\sqrt{19369}}{60} when ± is minus. Subtract \sqrt{19369} from -13.
x=\frac{\sqrt{19369}-13}{60} x=\frac{-\sqrt{19369}-13}{60}
The equation is now solved.
30x^{2}+13x-160=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
30x^{2}+13x-160-\left(-160\right)=-\left(-160\right)
Add 160 to both sides of the equation.
30x^{2}+13x=-\left(-160\right)
Subtracting -160 from itself leaves 0.
30x^{2}+13x=160
Subtract -160 from 0.
\frac{30x^{2}+13x}{30}=\frac{160}{30}
Divide both sides by 30.
x^{2}+\frac{13}{30}x=\frac{160}{30}
Dividing by 30 undoes the multiplication by 30.
x^{2}+\frac{13}{30}x=\frac{16}{3}
Reduce the fraction \frac{160}{30} to lowest terms by extracting and canceling out 10.
x^{2}+\frac{13}{30}x+\left(\frac{13}{60}\right)^{2}=\frac{16}{3}+\left(\frac{13}{60}\right)^{2}
Divide \frac{13}{30}, the coefficient of the x term, by 2 to get \frac{13}{60}. Then add the square of \frac{13}{60} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{13}{30}x+\frac{169}{3600}=\frac{16}{3}+\frac{169}{3600}
Square \frac{13}{60} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{13}{30}x+\frac{169}{3600}=\frac{19369}{3600}
Add \frac{16}{3} to \frac{169}{3600} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{13}{60}\right)^{2}=\frac{19369}{3600}
Factor x^{2}+\frac{13}{30}x+\frac{169}{3600}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{60}\right)^{2}}=\sqrt{\frac{19369}{3600}}
Take the square root of both sides of the equation.
x+\frac{13}{60}=\frac{\sqrt{19369}}{60} x+\frac{13}{60}=-\frac{\sqrt{19369}}{60}
Simplify.
x=\frac{\sqrt{19369}-13}{60} x=\frac{-\sqrt{19369}-13}{60}
Subtract \frac{13}{60} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}