Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=11 ab=30\left(-30\right)=-900
Factor the expression by grouping. First, the expression needs to be rewritten as 30x^{2}+ax+bx-30. To find a and b, set up a system to be solved.
-1,900 -2,450 -3,300 -4,225 -5,180 -6,150 -9,100 -10,90 -12,75 -15,60 -18,50 -20,45 -25,36 -30,30
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -900.
-1+900=899 -2+450=448 -3+300=297 -4+225=221 -5+180=175 -6+150=144 -9+100=91 -10+90=80 -12+75=63 -15+60=45 -18+50=32 -20+45=25 -25+36=11 -30+30=0
Calculate the sum for each pair.
a=-25 b=36
The solution is the pair that gives sum 11.
\left(30x^{2}-25x\right)+\left(36x-30\right)
Rewrite 30x^{2}+11x-30 as \left(30x^{2}-25x\right)+\left(36x-30\right).
5x\left(6x-5\right)+6\left(6x-5\right)
Factor out 5x in the first and 6 in the second group.
\left(6x-5\right)\left(5x+6\right)
Factor out common term 6x-5 by using distributive property.
30x^{2}+11x-30=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-11±\sqrt{11^{2}-4\times 30\left(-30\right)}}{2\times 30}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-11±\sqrt{121-4\times 30\left(-30\right)}}{2\times 30}
Square 11.
x=\frac{-11±\sqrt{121-120\left(-30\right)}}{2\times 30}
Multiply -4 times 30.
x=\frac{-11±\sqrt{121+3600}}{2\times 30}
Multiply -120 times -30.
x=\frac{-11±\sqrt{3721}}{2\times 30}
Add 121 to 3600.
x=\frac{-11±61}{2\times 30}
Take the square root of 3721.
x=\frac{-11±61}{60}
Multiply 2 times 30.
x=\frac{50}{60}
Now solve the equation x=\frac{-11±61}{60} when ± is plus. Add -11 to 61.
x=\frac{5}{6}
Reduce the fraction \frac{50}{60} to lowest terms by extracting and canceling out 10.
x=-\frac{72}{60}
Now solve the equation x=\frac{-11±61}{60} when ± is minus. Subtract 61 from -11.
x=-\frac{6}{5}
Reduce the fraction \frac{-72}{60} to lowest terms by extracting and canceling out 12.
30x^{2}+11x-30=30\left(x-\frac{5}{6}\right)\left(x-\left(-\frac{6}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{6} for x_{1} and -\frac{6}{5} for x_{2}.
30x^{2}+11x-30=30\left(x-\frac{5}{6}\right)\left(x+\frac{6}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
30x^{2}+11x-30=30\times \frac{6x-5}{6}\left(x+\frac{6}{5}\right)
Subtract \frac{5}{6} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
30x^{2}+11x-30=30\times \frac{6x-5}{6}\times \frac{5x+6}{5}
Add \frac{6}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
30x^{2}+11x-30=30\times \frac{\left(6x-5\right)\left(5x+6\right)}{6\times 5}
Multiply \frac{6x-5}{6} times \frac{5x+6}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
30x^{2}+11x-30=30\times \frac{\left(6x-5\right)\left(5x+6\right)}{30}
Multiply 6 times 5.
30x^{2}+11x-30=\left(6x-5\right)\left(5x+6\right)
Cancel out 30, the greatest common factor in 30 and 30.