Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\left(10j^{2}-9j-7\right)
Factor out 3.
a+b=-9 ab=10\left(-7\right)=-70
Consider 10j^{2}-9j-7. Factor the expression by grouping. First, the expression needs to be rewritten as 10j^{2}+aj+bj-7. To find a and b, set up a system to be solved.
1,-70 2,-35 5,-14 7,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -70.
1-70=-69 2-35=-33 5-14=-9 7-10=-3
Calculate the sum for each pair.
a=-14 b=5
The solution is the pair that gives sum -9.
\left(10j^{2}-14j\right)+\left(5j-7\right)
Rewrite 10j^{2}-9j-7 as \left(10j^{2}-14j\right)+\left(5j-7\right).
2j\left(5j-7\right)+5j-7
Factor out 2j in 10j^{2}-14j.
\left(5j-7\right)\left(2j+1\right)
Factor out common term 5j-7 by using distributive property.
3\left(5j-7\right)\left(2j+1\right)
Rewrite the complete factored expression.
30j^{2}-27j-21=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
j=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 30\left(-21\right)}}{2\times 30}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
j=\frac{-\left(-27\right)±\sqrt{729-4\times 30\left(-21\right)}}{2\times 30}
Square -27.
j=\frac{-\left(-27\right)±\sqrt{729-120\left(-21\right)}}{2\times 30}
Multiply -4 times 30.
j=\frac{-\left(-27\right)±\sqrt{729+2520}}{2\times 30}
Multiply -120 times -21.
j=\frac{-\left(-27\right)±\sqrt{3249}}{2\times 30}
Add 729 to 2520.
j=\frac{-\left(-27\right)±57}{2\times 30}
Take the square root of 3249.
j=\frac{27±57}{2\times 30}
The opposite of -27 is 27.
j=\frac{27±57}{60}
Multiply 2 times 30.
j=\frac{84}{60}
Now solve the equation j=\frac{27±57}{60} when ± is plus. Add 27 to 57.
j=\frac{7}{5}
Reduce the fraction \frac{84}{60} to lowest terms by extracting and canceling out 12.
j=-\frac{30}{60}
Now solve the equation j=\frac{27±57}{60} when ± is minus. Subtract 57 from 27.
j=-\frac{1}{2}
Reduce the fraction \frac{-30}{60} to lowest terms by extracting and canceling out 30.
30j^{2}-27j-21=30\left(j-\frac{7}{5}\right)\left(j-\left(-\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7}{5} for x_{1} and -\frac{1}{2} for x_{2}.
30j^{2}-27j-21=30\left(j-\frac{7}{5}\right)\left(j+\frac{1}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
30j^{2}-27j-21=30\times \frac{5j-7}{5}\left(j+\frac{1}{2}\right)
Subtract \frac{7}{5} from j by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
30j^{2}-27j-21=30\times \frac{5j-7}{5}\times \frac{2j+1}{2}
Add \frac{1}{2} to j by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
30j^{2}-27j-21=30\times \frac{\left(5j-7\right)\left(2j+1\right)}{5\times 2}
Multiply \frac{5j-7}{5} times \frac{2j+1}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
30j^{2}-27j-21=30\times \frac{\left(5j-7\right)\left(2j+1\right)}{10}
Multiply 5 times 2.
30j^{2}-27j-21=3\left(5j-7\right)\left(2j+1\right)
Cancel out 10, the greatest common factor in 30 and 10.