Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Share

factor(30\times 81+\frac{20x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(y)}{101^{2}}y)
Calculate 9 to the power of 2 and get 81.
factor(2430+\frac{20x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(y)}{101^{2}}y)
Multiply 30 and 81 to get 2430.
factor(2430+\frac{20x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(y)}{10201}y)
Calculate 101 to the power of 2 and get 10201.
factor(2430+\frac{20x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(y)y}{10201})
Express \frac{20x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(y)}{10201}y as a single fraction.
factor(\frac{2430\times 10201}{10201}+\frac{20x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(y)y}{10201})
To add or subtract expressions, expand them to make their denominators the same. Multiply 2430 times \frac{10201}{10201}.
factor(\frac{2430\times 10201+20x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(y)y}{10201})
Since \frac{2430\times 10201}{10201} and \frac{20x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(y)y}{10201} have the same denominator, add them by adding their numerators.
factor(\frac{24788430+20x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(y)y}{10201})
Multiply 2430 and 10201 to get 24788430.
10\left(2478843+2x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(y)y\right)
Consider 24788430+20x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(y)y. Factor out 10.
\frac{10\left(2478843+2x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(y)y\right)}{10201}
Rewrite the complete factored expression. Simplify.