Solve for x
x=\frac{125\sqrt{6721}}{143}+125\approx 196.662329787
x=-\frac{125\sqrt{6721}}{143}+125\approx 53.337670213
Graph
Share
Copied to clipboard
60\times 10^{6}=28.6\times 400\left(125-\frac{x}{2}\right)x
Multiply both sides of the equation by 2.
60\times 1000000=28.6\times 400\left(125-\frac{x}{2}\right)x
Calculate 10 to the power of 6 and get 1000000.
60000000=28.6\times 400\left(125-\frac{x}{2}\right)x
Multiply 60 and 1000000 to get 60000000.
60000000=11440\left(125-\frac{x}{2}\right)x
Multiply 28.6 and 400 to get 11440.
60000000=\left(1430000+11440\left(-\frac{x}{2}\right)\right)x
Use the distributive property to multiply 11440 by 125-\frac{x}{2}.
60000000=\left(1430000-5720x\right)x
Cancel out 2, the greatest common factor in 11440 and 2.
60000000=1430000x-5720x^{2}
Use the distributive property to multiply 1430000-5720x by x.
1430000x-5720x^{2}=60000000
Swap sides so that all variable terms are on the left hand side.
1430000x-5720x^{2}-60000000=0
Subtract 60000000 from both sides.
-5720x^{2}+1430000x-60000000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1430000±\sqrt{1430000^{2}-4\left(-5720\right)\left(-60000000\right)}}{2\left(-5720\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5720 for a, 1430000 for b, and -60000000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1430000±\sqrt{2044900000000-4\left(-5720\right)\left(-60000000\right)}}{2\left(-5720\right)}
Square 1430000.
x=\frac{-1430000±\sqrt{2044900000000+22880\left(-60000000\right)}}{2\left(-5720\right)}
Multiply -4 times -5720.
x=\frac{-1430000±\sqrt{2044900000000-1372800000000}}{2\left(-5720\right)}
Multiply 22880 times -60000000.
x=\frac{-1430000±\sqrt{672100000000}}{2\left(-5720\right)}
Add 2044900000000 to -1372800000000.
x=\frac{-1430000±10000\sqrt{6721}}{2\left(-5720\right)}
Take the square root of 672100000000.
x=\frac{-1430000±10000\sqrt{6721}}{-11440}
Multiply 2 times -5720.
x=\frac{10000\sqrt{6721}-1430000}{-11440}
Now solve the equation x=\frac{-1430000±10000\sqrt{6721}}{-11440} when ± is plus. Add -1430000 to 10000\sqrt{6721}.
x=-\frac{125\sqrt{6721}}{143}+125
Divide -1430000+10000\sqrt{6721} by -11440.
x=\frac{-10000\sqrt{6721}-1430000}{-11440}
Now solve the equation x=\frac{-1430000±10000\sqrt{6721}}{-11440} when ± is minus. Subtract 10000\sqrt{6721} from -1430000.
x=\frac{125\sqrt{6721}}{143}+125
Divide -1430000-10000\sqrt{6721} by -11440.
x=-\frac{125\sqrt{6721}}{143}+125 x=\frac{125\sqrt{6721}}{143}+125
The equation is now solved.
60\times 10^{6}=28.6\times 400\left(125-\frac{x}{2}\right)x
Multiply both sides of the equation by 2.
60\times 1000000=28.6\times 400\left(125-\frac{x}{2}\right)x
Calculate 10 to the power of 6 and get 1000000.
60000000=28.6\times 400\left(125-\frac{x}{2}\right)x
Multiply 60 and 1000000 to get 60000000.
60000000=11440\left(125-\frac{x}{2}\right)x
Multiply 28.6 and 400 to get 11440.
60000000=\left(1430000+11440\left(-\frac{x}{2}\right)\right)x
Use the distributive property to multiply 11440 by 125-\frac{x}{2}.
60000000=\left(1430000-5720x\right)x
Cancel out 2, the greatest common factor in 11440 and 2.
60000000=1430000x-5720x^{2}
Use the distributive property to multiply 1430000-5720x by x.
1430000x-5720x^{2}=60000000
Swap sides so that all variable terms are on the left hand side.
-5720x^{2}+1430000x=60000000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5720x^{2}+1430000x}{-5720}=\frac{60000000}{-5720}
Divide both sides by -5720.
x^{2}+\frac{1430000}{-5720}x=\frac{60000000}{-5720}
Dividing by -5720 undoes the multiplication by -5720.
x^{2}-250x=\frac{60000000}{-5720}
Divide 1430000 by -5720.
x^{2}-250x=-\frac{1500000}{143}
Reduce the fraction \frac{60000000}{-5720} to lowest terms by extracting and canceling out 40.
x^{2}-250x+\left(-125\right)^{2}=-\frac{1500000}{143}+\left(-125\right)^{2}
Divide -250, the coefficient of the x term, by 2 to get -125. Then add the square of -125 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-250x+15625=-\frac{1500000}{143}+15625
Square -125.
x^{2}-250x+15625=\frac{734375}{143}
Add -\frac{1500000}{143} to 15625.
\left(x-125\right)^{2}=\frac{734375}{143}
Factor x^{2}-250x+15625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-125\right)^{2}}=\sqrt{\frac{734375}{143}}
Take the square root of both sides of the equation.
x-125=\frac{125\sqrt{6721}}{143} x-125=-\frac{125\sqrt{6721}}{143}
Simplify.
x=\frac{125\sqrt{6721}}{143}+125 x=-\frac{125\sqrt{6721}}{143}+125
Add 125 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}