Solve for x
x=2
x=9
Graph
Share
Copied to clipboard
18=30-0.5\left(5-x\right)\left(12-2x\right)
Multiply 30 and 0.6 to get 18.
30-0.5\left(5-x\right)\left(12-2x\right)=18
Swap sides so that all variable terms are on the left hand side.
30-0.5\left(5-x\right)\left(12-2x\right)-18=0
Subtract 18 from both sides.
30+\left(-2.5+0.5x\right)\left(12-2x\right)-18=0
Use the distributive property to multiply -0.5 by 5-x.
30-30+11x-x^{2}-18=0
Use the distributive property to multiply -2.5+0.5x by 12-2x and combine like terms.
11x-x^{2}-18=0
Subtract 30 from 30 to get 0.
-x^{2}+11x-18=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-11±\sqrt{11^{2}-4\left(-1\right)\left(-18\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 11 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\left(-1\right)\left(-18\right)}}{2\left(-1\right)}
Square 11.
x=\frac{-11±\sqrt{121+4\left(-18\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-11±\sqrt{121-72}}{2\left(-1\right)}
Multiply 4 times -18.
x=\frac{-11±\sqrt{49}}{2\left(-1\right)}
Add 121 to -72.
x=\frac{-11±7}{2\left(-1\right)}
Take the square root of 49.
x=\frac{-11±7}{-2}
Multiply 2 times -1.
x=-\frac{4}{-2}
Now solve the equation x=\frac{-11±7}{-2} when ± is plus. Add -11 to 7.
x=2
Divide -4 by -2.
x=-\frac{18}{-2}
Now solve the equation x=\frac{-11±7}{-2} when ± is minus. Subtract 7 from -11.
x=9
Divide -18 by -2.
x=2 x=9
The equation is now solved.
18=30-0.5\left(5-x\right)\left(12-2x\right)
Multiply 30 and 0.6 to get 18.
30-0.5\left(5-x\right)\left(12-2x\right)=18
Swap sides so that all variable terms are on the left hand side.
30+\left(-2.5+0.5x\right)\left(12-2x\right)=18
Use the distributive property to multiply -0.5 by 5-x.
30-30+11x-x^{2}=18
Use the distributive property to multiply -2.5+0.5x by 12-2x and combine like terms.
11x-x^{2}=18
Subtract 30 from 30 to get 0.
-x^{2}+11x=18
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+11x}{-1}=\frac{18}{-1}
Divide both sides by -1.
x^{2}+\frac{11}{-1}x=\frac{18}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-11x=\frac{18}{-1}
Divide 11 by -1.
x^{2}-11x=-18
Divide 18 by -1.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=-18+\left(-\frac{11}{2}\right)^{2}
Divide -11, the coefficient of the x term, by 2 to get -\frac{11}{2}. Then add the square of -\frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-11x+\frac{121}{4}=-18+\frac{121}{4}
Square -\frac{11}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-11x+\frac{121}{4}=\frac{49}{4}
Add -18 to \frac{121}{4}.
\left(x-\frac{11}{2}\right)^{2}=\frac{49}{4}
Factor x^{2}-11x+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
x-\frac{11}{2}=\frac{7}{2} x-\frac{11}{2}=-\frac{7}{2}
Simplify.
x=9 x=2
Add \frac{11}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}