Evaluate
\frac{30\sqrt{129558}}{151}\approx 71.511588465
Share
Copied to clipboard
30\times \frac{\sqrt{858}}{\sqrt{151}}
Rewrite the square root of the division \sqrt{\frac{858}{151}} as the division of square roots \frac{\sqrt{858}}{\sqrt{151}}.
30\times \frac{\sqrt{858}\sqrt{151}}{\left(\sqrt{151}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{858}}{\sqrt{151}} by multiplying numerator and denominator by \sqrt{151}.
30\times \frac{\sqrt{858}\sqrt{151}}{151}
The square of \sqrt{151} is 151.
30\times \frac{\sqrt{129558}}{151}
To multiply \sqrt{858} and \sqrt{151}, multiply the numbers under the square root.
\frac{30\sqrt{129558}}{151}
Express 30\times \frac{\sqrt{129558}}{151} as a single fraction.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}