Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

90\sqrt{\frac{3}{9-2n}}-30\sqrt{\frac{3}{9-2n}}n=0
Use the distributive property to multiply 30\sqrt{\frac{3}{9-2n}} by 3-n.
90\sqrt{\frac{3}{9-2n}}=30\sqrt{\frac{3}{9-2n}}n
Subtract -30\sqrt{\frac{3}{9-2n}}n from both sides of the equation.
\left(90\sqrt{\frac{3}{9-2n}}\right)^{2}=\left(30\sqrt{\frac{3}{9-2n}}n\right)^{2}
Square both sides of the equation.
90^{2}\left(\sqrt{\frac{3}{9-2n}}\right)^{2}=\left(30\sqrt{\frac{3}{9-2n}}n\right)^{2}
Expand \left(90\sqrt{\frac{3}{9-2n}}\right)^{2}.
8100\left(\sqrt{\frac{3}{9-2n}}\right)^{2}=\left(30\sqrt{\frac{3}{9-2n}}n\right)^{2}
Calculate 90 to the power of 2 and get 8100.
8100\times \frac{3}{9-2n}=\left(30\sqrt{\frac{3}{9-2n}}n\right)^{2}
Calculate \sqrt{\frac{3}{9-2n}} to the power of 2 and get \frac{3}{9-2n}.
\frac{8100\times 3}{9-2n}=\left(30\sqrt{\frac{3}{9-2n}}n\right)^{2}
Express 8100\times \frac{3}{9-2n} as a single fraction.
\frac{8100\times 3}{9-2n}=30^{2}\left(\sqrt{\frac{3}{9-2n}}\right)^{2}n^{2}
Expand \left(30\sqrt{\frac{3}{9-2n}}n\right)^{2}.
\frac{8100\times 3}{9-2n}=900\left(\sqrt{\frac{3}{9-2n}}\right)^{2}n^{2}
Calculate 30 to the power of 2 and get 900.
\frac{8100\times 3}{9-2n}=900\times \frac{3}{9-2n}n^{2}
Calculate \sqrt{\frac{3}{9-2n}} to the power of 2 and get \frac{3}{9-2n}.
\frac{8100\times 3}{9-2n}=\frac{900\times 3}{9-2n}n^{2}
Express 900\times \frac{3}{9-2n} as a single fraction.
\frac{8100\times 3}{9-2n}=\frac{900\times 3n^{2}}{9-2n}
Express \frac{900\times 3}{9-2n}n^{2} as a single fraction.
\frac{24300}{9-2n}=\frac{900\times 3n^{2}}{9-2n}
Multiply 8100 and 3 to get 24300.
\frac{24300}{9-2n}=\frac{2700n^{2}}{9-2n}
Multiply 900 and 3 to get 2700.
\frac{24300}{9-2n}-\frac{2700n^{2}}{9-2n}=0
Subtract \frac{2700n^{2}}{9-2n} from both sides.
\frac{24300-2700n^{2}}{9-2n}=0
Since \frac{24300}{9-2n} and \frac{2700n^{2}}{9-2n} have the same denominator, subtract them by subtracting their numerators.
24300-2700n^{2}=0
Variable n cannot be equal to \frac{9}{2} since division by zero is not defined. Multiply both sides of the equation by -2n+9.
-2700n^{2}=-24300
Subtract 24300 from both sides. Anything subtracted from zero gives its negation.
n^{2}=\frac{-24300}{-2700}
Divide both sides by -2700.
n^{2}=9
Divide -24300 by -2700 to get 9.
n=3 n=-3
Take the square root of both sides of the equation.
30\sqrt{\frac{3}{9-2\times 3}}\left(3-3\right)=0
Substitute 3 for n in the equation 30\sqrt{\frac{3}{9-2n}}\left(3-n\right)=0.
0=0
Simplify. The value n=3 satisfies the equation.
30\sqrt{\frac{3}{9-2\left(-3\right)}}\left(3-\left(-3\right)\right)=0
Substitute -3 for n in the equation 30\sqrt{\frac{3}{9-2n}}\left(3-n\right)=0.
36\times 5^{\frac{1}{2}}=0
Simplify. The value n=-3 does not satisfy the equation.
n=3
Equation 90\sqrt{\frac{3}{9-2n}}=30\sqrt{\frac{3}{9-2n}}n has a unique solution.