Solve for z
z\leq 7
Share
Copied to clipboard
\frac{30}{6}\geq \frac{2}{3}z+\frac{1}{3}
Divide both sides by 6. Since 6 is positive, the inequality direction remains the same.
5\geq \frac{2}{3}z+\frac{1}{3}
Divide 30 by 6 to get 5.
\frac{2}{3}z+\frac{1}{3}\leq 5
Swap sides so that all variable terms are on the left hand side. This changes the sign direction.
\frac{2}{3}z\leq 5-\frac{1}{3}
Subtract \frac{1}{3} from both sides.
\frac{2}{3}z\leq \frac{15}{3}-\frac{1}{3}
Convert 5 to fraction \frac{15}{3}.
\frac{2}{3}z\leq \frac{15-1}{3}
Since \frac{15}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{3}z\leq \frac{14}{3}
Subtract 1 from 15 to get 14.
z\leq \frac{14}{3}\times \frac{3}{2}
Multiply both sides by \frac{3}{2}, the reciprocal of \frac{2}{3}. Since \frac{2}{3} is positive, the inequality direction remains the same.
z\leq \frac{14\times 3}{3\times 2}
Multiply \frac{14}{3} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
z\leq \frac{14}{2}
Cancel out 3 in both numerator and denominator.
z\leq 7
Divide 14 by 2 to get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}