30 \% ( x + 1 ) < 51 \% + x
Solve for x
x>-\frac{3}{10}
Graph
Share
Copied to clipboard
\frac{3}{10}\left(x+1\right)<\frac{51}{100}+x
Reduce the fraction \frac{30}{100} to lowest terms by extracting and canceling out 10.
\frac{3}{10}x+\frac{3}{10}<\frac{51}{100}+x
Use the distributive property to multiply \frac{3}{10} by x+1.
\frac{3}{10}x+\frac{3}{10}-x<\frac{51}{100}
Subtract x from both sides.
-\frac{7}{10}x+\frac{3}{10}<\frac{51}{100}
Combine \frac{3}{10}x and -x to get -\frac{7}{10}x.
-\frac{7}{10}x<\frac{51}{100}-\frac{3}{10}
Subtract \frac{3}{10} from both sides.
-\frac{7}{10}x<\frac{51}{100}-\frac{30}{100}
Least common multiple of 100 and 10 is 100. Convert \frac{51}{100} and \frac{3}{10} to fractions with denominator 100.
-\frac{7}{10}x<\frac{51-30}{100}
Since \frac{51}{100} and \frac{30}{100} have the same denominator, subtract them by subtracting their numerators.
-\frac{7}{10}x<\frac{21}{100}
Subtract 30 from 51 to get 21.
x>\frac{21}{100}\left(-\frac{10}{7}\right)
Multiply both sides by -\frac{10}{7}, the reciprocal of -\frac{7}{10}. Since -\frac{7}{10} is negative, the inequality direction is changed.
x>\frac{21\left(-10\right)}{100\times 7}
Multiply \frac{21}{100} times -\frac{10}{7} by multiplying numerator times numerator and denominator times denominator.
x>\frac{-210}{700}
Do the multiplications in the fraction \frac{21\left(-10\right)}{100\times 7}.
x>-\frac{3}{10}
Reduce the fraction \frac{-210}{700} to lowest terms by extracting and canceling out 70.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}