Solve for x (complex solution)
x=\frac{1250+i\times 5\sqrt{53258}}{981}\approx 1.27420999+1.176233173i
x=\frac{-i\times 5\sqrt{53258}+1250}{981}\approx 1.27420999-1.176233173i
Graph
Share
Copied to clipboard
25x+\frac{1}{2}-9.81x^{2}=30
Swap sides so that all variable terms are on the left hand side.
25x+\frac{1}{2}-9.81x^{2}-30=0
Subtract 30 from both sides.
25x-\frac{59}{2}-9.81x^{2}=0
Subtract 30 from \frac{1}{2} to get -\frac{59}{2}.
-9.81x^{2}+25x-\frac{59}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-25±\sqrt{25^{2}-4\left(-9.81\right)\left(-\frac{59}{2}\right)}}{2\left(-9.81\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9.81 for a, 25 for b, and -\frac{59}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±\sqrt{625-4\left(-9.81\right)\left(-\frac{59}{2}\right)}}{2\left(-9.81\right)}
Square 25.
x=\frac{-25±\sqrt{625+39.24\left(-\frac{59}{2}\right)}}{2\left(-9.81\right)}
Multiply -4 times -9.81.
x=\frac{-25±\sqrt{625-\frac{57879}{50}}}{2\left(-9.81\right)}
Multiply 39.24 times -\frac{59}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-25±\sqrt{-\frac{26629}{50}}}{2\left(-9.81\right)}
Add 625 to -\frac{57879}{50}.
x=\frac{-25±\frac{\sqrt{53258}i}{10}}{2\left(-9.81\right)}
Take the square root of -\frac{26629}{50}.
x=\frac{-25±\frac{\sqrt{53258}i}{10}}{-19.62}
Multiply 2 times -9.81.
x=\frac{\frac{\sqrt{53258}i}{10}-25}{-19.62}
Now solve the equation x=\frac{-25±\frac{\sqrt{53258}i}{10}}{-19.62} when ± is plus. Add -25 to \frac{i\sqrt{53258}}{10}.
x=\frac{-5\sqrt{53258}i+1250}{981}
Divide -25+\frac{i\sqrt{53258}}{10} by -19.62 by multiplying -25+\frac{i\sqrt{53258}}{10} by the reciprocal of -19.62.
x=\frac{-\frac{\sqrt{53258}i}{10}-25}{-19.62}
Now solve the equation x=\frac{-25±\frac{\sqrt{53258}i}{10}}{-19.62} when ± is minus. Subtract \frac{i\sqrt{53258}}{10} from -25.
x=\frac{1250+5\sqrt{53258}i}{981}
Divide -25-\frac{i\sqrt{53258}}{10} by -19.62 by multiplying -25-\frac{i\sqrt{53258}}{10} by the reciprocal of -19.62.
x=\frac{-5\sqrt{53258}i+1250}{981} x=\frac{1250+5\sqrt{53258}i}{981}
The equation is now solved.
25x+\frac{1}{2}-9.81x^{2}=30
Swap sides so that all variable terms are on the left hand side.
25x-9.81x^{2}=30-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
25x-9.81x^{2}=\frac{59}{2}
Subtract \frac{1}{2} from 30 to get \frac{59}{2}.
-9.81x^{2}+25x=\frac{59}{2}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9.81x^{2}+25x}{-9.81}=\frac{\frac{59}{2}}{-9.81}
Divide both sides of the equation by -9.81, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{25}{-9.81}x=\frac{\frac{59}{2}}{-9.81}
Dividing by -9.81 undoes the multiplication by -9.81.
x^{2}-\frac{2500}{981}x=\frac{\frac{59}{2}}{-9.81}
Divide 25 by -9.81 by multiplying 25 by the reciprocal of -9.81.
x^{2}-\frac{2500}{981}x=-\frac{2950}{981}
Divide \frac{59}{2} by -9.81 by multiplying \frac{59}{2} by the reciprocal of -9.81.
x^{2}-\frac{2500}{981}x+\left(-\frac{1250}{981}\right)^{2}=-\frac{2950}{981}+\left(-\frac{1250}{981}\right)^{2}
Divide -\frac{2500}{981}, the coefficient of the x term, by 2 to get -\frac{1250}{981}. Then add the square of -\frac{1250}{981} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2500}{981}x+\frac{1562500}{962361}=-\frac{2950}{981}+\frac{1562500}{962361}
Square -\frac{1250}{981} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2500}{981}x+\frac{1562500}{962361}=-\frac{1331450}{962361}
Add -\frac{2950}{981} to \frac{1562500}{962361} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1250}{981}\right)^{2}=-\frac{1331450}{962361}
Factor x^{2}-\frac{2500}{981}x+\frac{1562500}{962361}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1250}{981}\right)^{2}}=\sqrt{-\frac{1331450}{962361}}
Take the square root of both sides of the equation.
x-\frac{1250}{981}=\frac{5\sqrt{53258}i}{981} x-\frac{1250}{981}=-\frac{5\sqrt{53258}i}{981}
Simplify.
x=\frac{1250+5\sqrt{53258}i}{981} x=\frac{-5\sqrt{53258}i+1250}{981}
Add \frac{1250}{981} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}