30 + ( .0825 \times 30 ) + ( 15 \% \times 30 ) =
Evaluate
36.975
Factor
\frac{3 \cdot 17 \cdot 29}{5 \cdot 2 ^ {3}} = 36\frac{39}{40} = 36.975
Share
Copied to clipboard
30+2.475+\frac{15}{100}\times 30
Multiply 0.0825 and 30 to get 2.475.
32.475+\frac{15}{100}\times 30
Add 30 and 2.475 to get 32.475.
32.475+\frac{3}{20}\times 30
Reduce the fraction \frac{15}{100} to lowest terms by extracting and canceling out 5.
32.475+\frac{3\times 30}{20}
Express \frac{3}{20}\times 30 as a single fraction.
32.475+\frac{90}{20}
Multiply 3 and 30 to get 90.
32.475+\frac{9}{2}
Reduce the fraction \frac{90}{20} to lowest terms by extracting and canceling out 10.
\frac{1299}{40}+\frac{9}{2}
Convert decimal number 32.475 to fraction \frac{32475}{1000}. Reduce the fraction \frac{32475}{1000} to lowest terms by extracting and canceling out 25.
\frac{1299}{40}+\frac{180}{40}
Least common multiple of 40 and 2 is 40. Convert \frac{1299}{40} and \frac{9}{2} to fractions with denominator 40.
\frac{1299+180}{40}
Since \frac{1299}{40} and \frac{180}{40} have the same denominator, add them by adding their numerators.
\frac{1479}{40}
Add 1299 and 180 to get 1479.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}