Solve for v
v = \frac{4000000 \sqrt{41906}}{911} \approx 898834.469106524
v = -\frac{4000000 \sqrt{41906}}{911} \approx -898834.469106524
Share
Copied to clipboard
3.68\times \frac{1}{10000000000000000000}=\frac{1}{2}\times 9.11\times 10^{-31}v^{2}
Calculate 10 to the power of -19 and get \frac{1}{10000000000000000000}.
\frac{23}{62500000000000000000}=\frac{1}{2}\times 9.11\times 10^{-31}v^{2}
Multiply 3.68 and \frac{1}{10000000000000000000} to get \frac{23}{62500000000000000000}.
\frac{23}{62500000000000000000}=\frac{911}{200}\times 10^{-31}v^{2}
Multiply \frac{1}{2} and 9.11 to get \frac{911}{200}.
\frac{23}{62500000000000000000}=\frac{911}{200}\times \frac{1}{10000000000000000000000000000000}v^{2}
Calculate 10 to the power of -31 and get \frac{1}{10000000000000000000000000000000}.
\frac{23}{62500000000000000000}=\frac{911}{2000000000000000000000000000000000}v^{2}
Multiply \frac{911}{200} and \frac{1}{10000000000000000000000000000000} to get \frac{911}{2000000000000000000000000000000000}.
\frac{911}{2000000000000000000000000000000000}v^{2}=\frac{23}{62500000000000000000}
Swap sides so that all variable terms are on the left hand side.
v^{2}=\frac{23}{62500000000000000000}\times \frac{2000000000000000000000000000000000}{911}
Multiply both sides by \frac{2000000000000000000000000000000000}{911}, the reciprocal of \frac{911}{2000000000000000000000000000000000}.
v^{2}=\frac{736000000000000}{911}
Multiply \frac{23}{62500000000000000000} and \frac{2000000000000000000000000000000000}{911} to get \frac{736000000000000}{911}.
v=\frac{4000000\sqrt{41906}}{911} v=-\frac{4000000\sqrt{41906}}{911}
Take the square root of both sides of the equation.
3.68\times \frac{1}{10000000000000000000}=\frac{1}{2}\times 9.11\times 10^{-31}v^{2}
Calculate 10 to the power of -19 and get \frac{1}{10000000000000000000}.
\frac{23}{62500000000000000000}=\frac{1}{2}\times 9.11\times 10^{-31}v^{2}
Multiply 3.68 and \frac{1}{10000000000000000000} to get \frac{23}{62500000000000000000}.
\frac{23}{62500000000000000000}=\frac{911}{200}\times 10^{-31}v^{2}
Multiply \frac{1}{2} and 9.11 to get \frac{911}{200}.
\frac{23}{62500000000000000000}=\frac{911}{200}\times \frac{1}{10000000000000000000000000000000}v^{2}
Calculate 10 to the power of -31 and get \frac{1}{10000000000000000000000000000000}.
\frac{23}{62500000000000000000}=\frac{911}{2000000000000000000000000000000000}v^{2}
Multiply \frac{911}{200} and \frac{1}{10000000000000000000000000000000} to get \frac{911}{2000000000000000000000000000000000}.
\frac{911}{2000000000000000000000000000000000}v^{2}=\frac{23}{62500000000000000000}
Swap sides so that all variable terms are on the left hand side.
\frac{911}{2000000000000000000000000000000000}v^{2}-\frac{23}{62500000000000000000}=0
Subtract \frac{23}{62500000000000000000} from both sides.
v=\frac{0±\sqrt{0^{2}-4\times \frac{911}{2000000000000000000000000000000000}\left(-\frac{23}{62500000000000000000}\right)}}{2\times \frac{911}{2000000000000000000000000000000000}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{911}{2000000000000000000000000000000000} for a, 0 for b, and -\frac{23}{62500000000000000000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{0±\sqrt{-4\times \frac{911}{2000000000000000000000000000000000}\left(-\frac{23}{62500000000000000000}\right)}}{2\times \frac{911}{2000000000000000000000000000000000}}
Square 0.
v=\frac{0±\sqrt{-\frac{911}{500000000000000000000000000000000}\left(-\frac{23}{62500000000000000000}\right)}}{2\times \frac{911}{2000000000000000000000000000000000}}
Multiply -4 times \frac{911}{2000000000000000000000000000000000}.
v=\frac{0±\sqrt{\frac{20953}{31250000000000000000000000000000000000000000000000000}}}{2\times \frac{911}{2000000000000000000000000000000000}}
Multiply -\frac{911}{500000000000000000000000000000000} times -\frac{23}{62500000000000000000} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
v=\frac{0±\frac{\sqrt{41906}}{250000000000000000000000000}}{2\times \frac{911}{2000000000000000000000000000000000}}
Take the square root of \frac{20953}{31250000000000000000000000000000000000000000000000000}.
v=\frac{0±\frac{\sqrt{41906}}{250000000000000000000000000}}{\frac{911}{1000000000000000000000000000000000}}
Multiply 2 times \frac{911}{2000000000000000000000000000000000}.
v=\frac{4000000\sqrt{41906}}{911}
Now solve the equation v=\frac{0±\frac{\sqrt{41906}}{250000000000000000000000000}}{\frac{911}{1000000000000000000000000000000000}} when ± is plus.
v=-\frac{4000000\sqrt{41906}}{911}
Now solve the equation v=\frac{0±\frac{\sqrt{41906}}{250000000000000000000000000}}{\frac{911}{1000000000000000000000000000000000}} when ± is minus.
v=\frac{4000000\sqrt{41906}}{911} v=-\frac{4000000\sqrt{41906}}{911}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}