Solve for V
V=6mn\Omega
m\neq 0\text{ and }n\neq 0
Solve for m
\left\{\begin{matrix}\\m\neq 0\text{, }&\text{unconditionally}\\m=\frac{V}{6n\Omega }\text{, }&V\neq 0\text{ and }n\neq 0\text{ and }\Omega \neq 0\end{matrix}\right.
Share
Copied to clipboard
3.6\Omega \times 3mn=5V-3.2V
Multiply both sides of the equation by 3mn.
10.8\Omega mn=5V-3.2V
Multiply 3.6 and 3 to get 10.8.
10.8\Omega mn=1.8V
Combine 5V and -3.2V to get 1.8V.
1.8V=10.8\Omega mn
Swap sides so that all variable terms are on the left hand side.
1.8V=\frac{54mn\Omega }{5}
The equation is in standard form.
\frac{1.8V}{1.8}=\frac{54mn\Omega }{1.8\times 5}
Divide both sides of the equation by 1.8, which is the same as multiplying both sides by the reciprocal of the fraction.
V=\frac{54mn\Omega }{1.8\times 5}
Dividing by 1.8 undoes the multiplication by 1.8.
V=6mn\Omega
Divide \frac{54\Omega mn}{5} by 1.8 by multiplying \frac{54\Omega mn}{5} by the reciprocal of 1.8.
3.6\Omega \times 3mn=5V-3.2V
Variable m cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3mn.
10.8\Omega mn=5V-3.2V
Multiply 3.6 and 3 to get 10.8.
10.8\Omega mn=1.8V
Combine 5V and -3.2V to get 1.8V.
\frac{54n\Omega }{5}m=\frac{9V}{5}
The equation is in standard form.
\frac{5\times \frac{54n\Omega }{5}m}{54n\Omega }=\frac{9V}{5\times \frac{54n\Omega }{5}}
Divide both sides by 10.8\Omega n.
m=\frac{9V}{5\times \frac{54n\Omega }{5}}
Dividing by 10.8\Omega n undoes the multiplication by 10.8\Omega n.
m=\frac{V}{6n\Omega }
Divide \frac{9V}{5} by 10.8\Omega n.
m=\frac{V}{6n\Omega }\text{, }m\neq 0
Variable m cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}