Evaluate
5.25
Factor
\frac{3 \cdot 7}{2 ^ {2}} = 5\frac{1}{4} = 5.25
Share
Copied to clipboard
3.587+5-\frac{5\times 2+1}{2}+7-\frac{3\times 4+1}{4}-1.587
The opposite of -5 is 5.
8.587-\frac{5\times 2+1}{2}+7-\frac{3\times 4+1}{4}-1.587
Add 3.587 and 5 to get 8.587.
8.587-\frac{10+1}{2}+7-\frac{3\times 4+1}{4}-1.587
Multiply 5 and 2 to get 10.
8.587-\frac{11}{2}+7-\frac{3\times 4+1}{4}-1.587
Add 10 and 1 to get 11.
\frac{8587}{1000}-\frac{11}{2}+7-\frac{3\times 4+1}{4}-1.587
Convert decimal number 8.587 to fraction \frac{8587}{1000}.
\frac{8587}{1000}-\frac{5500}{1000}+7-\frac{3\times 4+1}{4}-1.587
Least common multiple of 1000 and 2 is 1000. Convert \frac{8587}{1000} and \frac{11}{2} to fractions with denominator 1000.
\frac{8587-5500}{1000}+7-\frac{3\times 4+1}{4}-1.587
Since \frac{8587}{1000} and \frac{5500}{1000} have the same denominator, subtract them by subtracting their numerators.
\frac{3087}{1000}+7-\frac{3\times 4+1}{4}-1.587
Subtract 5500 from 8587 to get 3087.
\frac{3087}{1000}+\frac{7000}{1000}-\frac{3\times 4+1}{4}-1.587
Convert 7 to fraction \frac{7000}{1000}.
\frac{3087+7000}{1000}-\frac{3\times 4+1}{4}-1.587
Since \frac{3087}{1000} and \frac{7000}{1000} have the same denominator, add them by adding their numerators.
\frac{10087}{1000}-\frac{3\times 4+1}{4}-1.587
Add 3087 and 7000 to get 10087.
\frac{10087}{1000}-\frac{12+1}{4}-1.587
Multiply 3 and 4 to get 12.
\frac{10087}{1000}-\frac{13}{4}-1.587
Add 12 and 1 to get 13.
\frac{10087}{1000}-\frac{3250}{1000}-1.587
Least common multiple of 1000 and 4 is 1000. Convert \frac{10087}{1000} and \frac{13}{4} to fractions with denominator 1000.
\frac{10087-3250}{1000}-1.587
Since \frac{10087}{1000} and \frac{3250}{1000} have the same denominator, subtract them by subtracting their numerators.
\frac{6837}{1000}-1.587
Subtract 3250 from 10087 to get 6837.
\frac{6837}{1000}-\frac{1587}{1000}
Convert decimal number 1.587 to fraction \frac{1587}{1000}.
\frac{6837-1587}{1000}
Since \frac{6837}{1000} and \frac{1587}{1000} have the same denominator, subtract them by subtracting their numerators.
\frac{5250}{1000}
Subtract 1587 from 6837 to get 5250.
\frac{21}{4}
Reduce the fraction \frac{5250}{1000} to lowest terms by extracting and canceling out 250.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}