Solve for A
A=150.035
Share
Copied to clipboard
3.5=A\times 250-15000-A\times 150
To find the opposite of 15000+A\times 150, find the opposite of each term.
3.5=A\times 250-15000-150A
Multiply -1 and 150 to get -150.
3.5=100A-15000
Combine A\times 250 and -150A to get 100A.
100A-15000=3.5
Swap sides so that all variable terms are on the left hand side.
100A=3.5+15000
Add 15000 to both sides.
100A=15003.5
Add 3.5 and 15000 to get 15003.5.
A=\frac{15003.5}{100}
Divide both sides by 100.
A=\frac{150035}{1000}
Expand \frac{15003.5}{100} by multiplying both numerator and the denominator by 10.
A=\frac{30007}{200}
Reduce the fraction \frac{150035}{1000} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}