Solve for x
x\geq -\frac{18}{23}
Graph
Share
Copied to clipboard
3.5x+0.4-1.2x\geq -1.4
Subtract 1.2x from both sides.
2.3x+0.4\geq -1.4
Combine 3.5x and -1.2x to get 2.3x.
2.3x\geq -1.4-0.4
Subtract 0.4 from both sides.
2.3x\geq -1.8
Subtract 0.4 from -1.4 to get -1.8.
x\geq \frac{-1.8}{2.3}
Divide both sides by 2.3. Since 2.3 is positive, the inequality direction remains the same.
x\geq \frac{-18}{23}
Expand \frac{-1.8}{2.3} by multiplying both numerator and the denominator by 10.
x\geq -\frac{18}{23}
Fraction \frac{-18}{23} can be rewritten as -\frac{18}{23} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}