Solve for x
x=\frac{\sqrt{155170}}{70}-\frac{129}{35}\approx 1.941660496
x=-\frac{\sqrt{155170}}{70}-\frac{129}{35}\approx -9.313089068
Graph
Share
Copied to clipboard
3.5x^{2}+25.8x-63.29=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-25.8±\sqrt{25.8^{2}-4\times 3.5\left(-63.29\right)}}{2\times 3.5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3.5 for a, 25.8 for b, and -63.29 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25.8±\sqrt{665.64-4\times 3.5\left(-63.29\right)}}{2\times 3.5}
Square 25.8 by squaring both the numerator and the denominator of the fraction.
x=\frac{-25.8±\sqrt{665.64-14\left(-63.29\right)}}{2\times 3.5}
Multiply -4 times 3.5.
x=\frac{-25.8±\sqrt{665.64+886.06}}{2\times 3.5}
Multiply -14 times -63.29.
x=\frac{-25.8±\sqrt{1551.7}}{2\times 3.5}
Add 665.64 to 886.06 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-25.8±\frac{\sqrt{155170}}{10}}{2\times 3.5}
Take the square root of 1551.7.
x=\frac{-25.8±\frac{\sqrt{155170}}{10}}{7}
Multiply 2 times 3.5.
x=\frac{\frac{\sqrt{155170}}{10}-\frac{129}{5}}{7}
Now solve the equation x=\frac{-25.8±\frac{\sqrt{155170}}{10}}{7} when ± is plus. Add -25.8 to \frac{\sqrt{155170}}{10}.
x=\frac{\sqrt{155170}}{70}-\frac{129}{35}
Divide -\frac{129}{5}+\frac{\sqrt{155170}}{10} by 7.
x=\frac{-\frac{\sqrt{155170}}{10}-\frac{129}{5}}{7}
Now solve the equation x=\frac{-25.8±\frac{\sqrt{155170}}{10}}{7} when ± is minus. Subtract \frac{\sqrt{155170}}{10} from -25.8.
x=-\frac{\sqrt{155170}}{70}-\frac{129}{35}
Divide -\frac{129}{5}-\frac{\sqrt{155170}}{10} by 7.
x=\frac{\sqrt{155170}}{70}-\frac{129}{35} x=-\frac{\sqrt{155170}}{70}-\frac{129}{35}
The equation is now solved.
3.5x^{2}+25.8x-63.29=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3.5x^{2}+25.8x-63.29-\left(-63.29\right)=-\left(-63.29\right)
Add 63.29 to both sides of the equation.
3.5x^{2}+25.8x=-\left(-63.29\right)
Subtracting -63.29 from itself leaves 0.
3.5x^{2}+25.8x=63.29
Subtract -63.29 from 0.
\frac{3.5x^{2}+25.8x}{3.5}=\frac{63.29}{3.5}
Divide both sides of the equation by 3.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{25.8}{3.5}x=\frac{63.29}{3.5}
Dividing by 3.5 undoes the multiplication by 3.5.
x^{2}+\frac{258}{35}x=\frac{63.29}{3.5}
Divide 25.8 by 3.5 by multiplying 25.8 by the reciprocal of 3.5.
x^{2}+\frac{258}{35}x=\frac{6329}{350}
Divide 63.29 by 3.5 by multiplying 63.29 by the reciprocal of 3.5.
x^{2}+\frac{258}{35}x+\frac{129}{35}^{2}=\frac{6329}{350}+\frac{129}{35}^{2}
Divide \frac{258}{35}, the coefficient of the x term, by 2 to get \frac{129}{35}. Then add the square of \frac{129}{35} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{258}{35}x+\frac{16641}{1225}=\frac{6329}{350}+\frac{16641}{1225}
Square \frac{129}{35} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{258}{35}x+\frac{16641}{1225}=\frac{15517}{490}
Add \frac{6329}{350} to \frac{16641}{1225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{129}{35}\right)^{2}=\frac{15517}{490}
Factor x^{2}+\frac{258}{35}x+\frac{16641}{1225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{129}{35}\right)^{2}}=\sqrt{\frac{15517}{490}}
Take the square root of both sides of the equation.
x+\frac{129}{35}=\frac{\sqrt{155170}}{70} x+\frac{129}{35}=-\frac{\sqrt{155170}}{70}
Simplify.
x=\frac{\sqrt{155170}}{70}-\frac{129}{35} x=-\frac{\sqrt{155170}}{70}-\frac{129}{35}
Subtract \frac{129}{35} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}