Evaluate
2397.5
Factor
\frac{5 \cdot 7 \cdot 137}{2} = 2397\frac{1}{2} = 2397.5
Share
Copied to clipboard
3.5\left(16.875-\frac{2}{3}\times \frac{16+5}{16}-\left(0.35+\frac{8\times 5+4}{5}\right)\right)\times 100
Multiply 1 and 16 to get 16.
3.5\left(16.875-\frac{2}{3}\times \frac{21}{16}-\left(0.35+\frac{8\times 5+4}{5}\right)\right)\times 100
Add 16 and 5 to get 21.
3.5\left(16.875-\frac{2\times 21}{3\times 16}-\left(0.35+\frac{8\times 5+4}{5}\right)\right)\times 100
Multiply \frac{2}{3} times \frac{21}{16} by multiplying numerator times numerator and denominator times denominator.
3.5\left(16.875-\frac{42}{48}-\left(0.35+\frac{8\times 5+4}{5}\right)\right)\times 100
Do the multiplications in the fraction \frac{2\times 21}{3\times 16}.
3.5\left(16.875-\frac{7}{8}-\left(0.35+\frac{8\times 5+4}{5}\right)\right)\times 100
Reduce the fraction \frac{42}{48} to lowest terms by extracting and canceling out 6.
3.5\left(\frac{135}{8}-\frac{7}{8}-\left(0.35+\frac{8\times 5+4}{5}\right)\right)\times 100
Convert decimal number 16.875 to fraction \frac{16875}{1000}. Reduce the fraction \frac{16875}{1000} to lowest terms by extracting and canceling out 125.
3.5\left(\frac{135-7}{8}-\left(0.35+\frac{8\times 5+4}{5}\right)\right)\times 100
Since \frac{135}{8} and \frac{7}{8} have the same denominator, subtract them by subtracting their numerators.
3.5\left(\frac{128}{8}-\left(0.35+\frac{8\times 5+4}{5}\right)\right)\times 100
Subtract 7 from 135 to get 128.
3.5\left(16-\left(0.35+\frac{8\times 5+4}{5}\right)\right)\times 100
Divide 128 by 8 to get 16.
3.5\left(16-\left(0.35+\frac{40+4}{5}\right)\right)\times 100
Multiply 8 and 5 to get 40.
3.5\left(16-\left(0.35+\frac{44}{5}\right)\right)\times 100
Add 40 and 4 to get 44.
3.5\left(16-\left(\frac{7}{20}+\frac{44}{5}\right)\right)\times 100
Convert decimal number 0.35 to fraction \frac{35}{100}. Reduce the fraction \frac{35}{100} to lowest terms by extracting and canceling out 5.
3.5\left(16-\left(\frac{7}{20}+\frac{176}{20}\right)\right)\times 100
Least common multiple of 20 and 5 is 20. Convert \frac{7}{20} and \frac{44}{5} to fractions with denominator 20.
3.5\left(16-\frac{7+176}{20}\right)\times 100
Since \frac{7}{20} and \frac{176}{20} have the same denominator, add them by adding their numerators.
3.5\left(16-\frac{183}{20}\right)\times 100
Add 7 and 176 to get 183.
3.5\left(\frac{320}{20}-\frac{183}{20}\right)\times 100
Convert 16 to fraction \frac{320}{20}.
3.5\times \frac{320-183}{20}\times 100
Since \frac{320}{20} and \frac{183}{20} have the same denominator, subtract them by subtracting their numerators.
3.5\times \frac{137}{20}\times 100
Subtract 183 from 320 to get 137.
\frac{7}{2}\times \frac{137}{20}\times 100
Convert decimal number 3.5 to fraction \frac{35}{10}. Reduce the fraction \frac{35}{10} to lowest terms by extracting and canceling out 5.
\frac{7\times 137}{2\times 20}\times 100
Multiply \frac{7}{2} times \frac{137}{20} by multiplying numerator times numerator and denominator times denominator.
\frac{959}{40}\times 100
Do the multiplications in the fraction \frac{7\times 137}{2\times 20}.
\frac{959\times 100}{40}
Express \frac{959}{40}\times 100 as a single fraction.
\frac{95900}{40}
Multiply 959 and 100 to get 95900.
\frac{4795}{2}
Reduce the fraction \frac{95900}{40} to lowest terms by extracting and canceling out 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}