Solve for a
a\geq 60
Share
Copied to clipboard
80-3.2a+2.7a\leq 50
Use the distributive property to multiply 3.2 by 25-a.
80-0.5a\leq 50
Combine -3.2a and 2.7a to get -0.5a.
-0.5a\leq 50-80
Subtract 80 from both sides.
-0.5a\leq -30
Subtract 80 from 50 to get -30.
a\geq \frac{-30}{-0.5}
Divide both sides by -0.5. Since -0.5 is negative, the inequality direction is changed.
a\geq \frac{-300}{-5}
Expand \frac{-30}{-0.5} by multiplying both numerator and the denominator by 10.
a\geq 60
Divide -300 by -5 to get 60.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}