Solve for x
x=\frac{79y}{600}+\frac{10}{3}
Solve for y
y=\frac{600x-2000}{79}
Graph
Share
Copied to clipboard
3.16y-24x+32=-48
Use the distributive property to multiply -8 by 3x-4.
-24x+32=-48-3.16y
Subtract 3.16y from both sides.
-24x=-48-3.16y-32
Subtract 32 from both sides.
-24x=-80-3.16y
Subtract 32 from -48 to get -80.
-24x=-\frac{79y}{25}-80
The equation is in standard form.
\frac{-24x}{-24}=\frac{-\frac{79y}{25}-80}{-24}
Divide both sides by -24.
x=\frac{-\frac{79y}{25}-80}{-24}
Dividing by -24 undoes the multiplication by -24.
x=\frac{79y}{600}+\frac{10}{3}
Divide -80-\frac{79y}{25} by -24.
3.16y-24x+32=-48
Use the distributive property to multiply -8 by 3x-4.
3.16y+32=-48+24x
Add 24x to both sides.
3.16y=-48+24x-32
Subtract 32 from both sides.
3.16y=-80+24x
Subtract 32 from -48 to get -80.
3.16y=24x-80
The equation is in standard form.
\frac{3.16y}{3.16}=\frac{24x-80}{3.16}
Divide both sides of the equation by 3.16, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{24x-80}{3.16}
Dividing by 3.16 undoes the multiplication by 3.16.
y=\frac{600x-2000}{79}
Divide -80+24x by 3.16 by multiplying -80+24x by the reciprocal of 3.16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}