Evaluate
\frac{157Y}{2500}
Differentiate w.r.t. Y
0.0628
Share
Copied to clipboard
3.14Y\times \frac{3.14}{628}\times 4
Multiply 2 and 314 to get 628.
3.14Y\times \frac{314}{62800}\times 4
Expand \frac{3.14}{628} by multiplying both numerator and the denominator by 100.
3.14Y\times \frac{1}{200}\times 4
Reduce the fraction \frac{314}{62800} to lowest terms by extracting and canceling out 314.
\frac{157}{50}Y\times \frac{1}{200}\times 4
Convert decimal number 3.14 to fraction \frac{314}{100}. Reduce the fraction \frac{314}{100} to lowest terms by extracting and canceling out 2.
\frac{157\times 1}{50\times 200}Y\times 4
Multiply \frac{157}{50} times \frac{1}{200} by multiplying numerator times numerator and denominator times denominator.
\frac{157}{10000}Y\times 4
Do the multiplications in the fraction \frac{157\times 1}{50\times 200}.
\frac{157\times 4}{10000}Y
Express \frac{157}{10000}\times 4 as a single fraction.
\frac{628}{10000}Y
Multiply 157 and 4 to get 628.
\frac{157}{2500}Y
Reduce the fraction \frac{628}{10000} to lowest terms by extracting and canceling out 4.
\frac{\mathrm{d}}{\mathrm{d}Y}(3.14Y\times \frac{3.14}{628}\times 4)
Multiply 2 and 314 to get 628.
\frac{\mathrm{d}}{\mathrm{d}Y}(3.14Y\times \frac{314}{62800}\times 4)
Expand \frac{3.14}{628} by multiplying both numerator and the denominator by 100.
\frac{\mathrm{d}}{\mathrm{d}Y}(3.14Y\times \frac{1}{200}\times 4)
Reduce the fraction \frac{314}{62800} to lowest terms by extracting and canceling out 314.
\frac{\mathrm{d}}{\mathrm{d}Y}(\frac{157}{50}Y\times \frac{1}{200}\times 4)
Convert decimal number 3.14 to fraction \frac{314}{100}. Reduce the fraction \frac{314}{100} to lowest terms by extracting and canceling out 2.
\frac{\mathrm{d}}{\mathrm{d}Y}(\frac{157\times 1}{50\times 200}Y\times 4)
Multiply \frac{157}{50} times \frac{1}{200} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}Y}(\frac{157}{10000}Y\times 4)
Do the multiplications in the fraction \frac{157\times 1}{50\times 200}.
\frac{\mathrm{d}}{\mathrm{d}Y}(\frac{157\times 4}{10000}Y)
Express \frac{157}{10000}\times 4 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}Y}(\frac{628}{10000}Y)
Multiply 157 and 4 to get 628.
\frac{\mathrm{d}}{\mathrm{d}Y}(\frac{157}{2500}Y)
Reduce the fraction \frac{628}{10000} to lowest terms by extracting and canceling out 4.
\frac{157}{2500}Y^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{157}{2500}Y^{0}
Subtract 1 from 1.
\frac{157}{2500}\times 1
For any term t except 0, t^{0}=1.
\frac{157}{2500}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}