Solve for I
I=\frac{147}{10t}
t\neq 0
Solve for t
t=\frac{147}{10I}
I\neq 0
Share
Copied to clipboard
15.7=It+1
Multiply 3.14 and 5 to get 15.7.
It+1=15.7
Swap sides so that all variable terms are on the left hand side.
It=15.7-1
Subtract 1 from both sides.
It=14.7
Subtract 1 from 15.7 to get 14.7.
tI=\frac{147}{10}
The equation is in standard form.
\frac{tI}{t}=\frac{\frac{147}{10}}{t}
Divide both sides by t.
I=\frac{\frac{147}{10}}{t}
Dividing by t undoes the multiplication by t.
I=\frac{147}{10t}
Divide \frac{147}{10} by t.
15.7=It+1
Multiply 3.14 and 5 to get 15.7.
It+1=15.7
Swap sides so that all variable terms are on the left hand side.
It=15.7-1
Subtract 1 from both sides.
It=14.7
Subtract 1 from 15.7 to get 14.7.
It=\frac{147}{10}
The equation is in standard form.
\frac{It}{I}=\frac{\frac{147}{10}}{I}
Divide both sides by I.
t=\frac{\frac{147}{10}}{I}
Dividing by I undoes the multiplication by I.
t=\frac{147}{10I}
Divide \frac{147}{10} by I.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}