Solve for y
y=\frac{200\sqrt{53633405}}{10726681}+0.7\approx 0.836547048
y=-\frac{200\sqrt{53633405}}{10726681}+0.7\approx 0.563452952
Graph
Share
Copied to clipboard
6-\left(2000\times 2+1\right)\times 350\times 3.83\times 10^{-7}\times 100\left(y-0.7\right)^{2}=5
Multiply both sides of the equation by 2.
6-\left(4000+1\right)\times 350\times 3.83\times 10^{-7}\times 100\left(y-0.7\right)^{2}=5
Multiply 2000 and 2 to get 4000.
6-4001\times 350\times 3.83\times 10^{-7}\times 100\left(y-0.7\right)^{2}=5
Add 4000 and 1 to get 4001.
6-1400350\times 3.83\times 10^{-7}\times 100\left(y-0.7\right)^{2}=5
Multiply 4001 and 350 to get 1400350.
6-5363340.5\times 10^{-7}\times 100\left(y-0.7\right)^{2}=5
Multiply 1400350 and 3.83 to get 5363340.5.
6-5363340.5\times \frac{1}{10000000}\times 100\left(y-0.7\right)^{2}=5
Calculate 10 to the power of -7 and get \frac{1}{10000000}.
6-\frac{10726681}{20000000}\times 100\left(y-0.7\right)^{2}=5
Multiply 5363340.5 and \frac{1}{10000000} to get \frac{10726681}{20000000}.
6-\frac{10726681}{200000}\left(y-0.7\right)^{2}=5
Multiply \frac{10726681}{20000000} and 100 to get \frac{10726681}{200000}.
6-\frac{10726681}{200000}\left(y^{2}-1.4y+0.49\right)=5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-0.7\right)^{2}.
6-\frac{10726681}{200000}y^{2}+\frac{75086767}{1000000}y-\frac{525607369}{20000000}=5
Use the distributive property to multiply -\frac{10726681}{200000} by y^{2}-1.4y+0.49.
-\frac{405607369}{20000000}-\frac{10726681}{200000}y^{2}+\frac{75086767}{1000000}y=5
Subtract \frac{525607369}{20000000} from 6 to get -\frac{405607369}{20000000}.
-\frac{405607369}{20000000}-\frac{10726681}{200000}y^{2}+\frac{75086767}{1000000}y-5=0
Subtract 5 from both sides.
-\frac{505607369}{20000000}-\frac{10726681}{200000}y^{2}+\frac{75086767}{1000000}y=0
Subtract 5 from -\frac{405607369}{20000000} to get -\frac{505607369}{20000000}.
-\frac{10726681}{200000}y^{2}+\frac{75086767}{1000000}y-\frac{505607369}{20000000}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\frac{75086767}{1000000}±\sqrt{\left(\frac{75086767}{1000000}\right)^{2}-4\left(-\frac{10726681}{200000}\right)\left(-\frac{505607369}{20000000}\right)}}{2\left(-\frac{10726681}{200000}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{10726681}{200000} for a, \frac{75086767}{1000000} for b, and -\frac{505607369}{20000000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\frac{75086767}{1000000}±\sqrt{\frac{5638022578512289}{1000000000000}-4\left(-\frac{10726681}{200000}\right)\left(-\frac{505607369}{20000000}\right)}}{2\left(-\frac{10726681}{200000}\right)}
Square \frac{75086767}{1000000} by squaring both the numerator and the denominator of the fraction.
y=\frac{-\frac{75086767}{1000000}±\sqrt{\frac{5638022578512289}{1000000000000}+\frac{10726681}{50000}\left(-\frac{505607369}{20000000}\right)}}{2\left(-\frac{10726681}{200000}\right)}
Multiply -4 times -\frac{10726681}{200000}.
y=\frac{-\frac{75086767}{1000000}±\sqrt{\frac{5638022578512289-5423488958512289}{1000000000000}}}{2\left(-\frac{10726681}{200000}\right)}
Multiply \frac{10726681}{50000} times -\frac{505607369}{20000000} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{-\frac{75086767}{1000000}±\sqrt{\frac{10726681}{50000}}}{2\left(-\frac{10726681}{200000}\right)}
Add \frac{5638022578512289}{1000000000000} to -\frac{5423488958512289}{1000000000000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\frac{75086767}{1000000}±\frac{\sqrt{53633405}}{500}}{2\left(-\frac{10726681}{200000}\right)}
Take the square root of \frac{10726681}{50000}.
y=\frac{-\frac{75086767}{1000000}±\frac{\sqrt{53633405}}{500}}{-\frac{10726681}{100000}}
Multiply 2 times -\frac{10726681}{200000}.
y=\frac{\frac{\sqrt{53633405}}{500}-\frac{75086767}{1000000}}{-\frac{10726681}{100000}}
Now solve the equation y=\frac{-\frac{75086767}{1000000}±\frac{\sqrt{53633405}}{500}}{-\frac{10726681}{100000}} when ± is plus. Add -\frac{75086767}{1000000} to \frac{\sqrt{53633405}}{500}.
y=-\frac{200\sqrt{53633405}}{10726681}+\frac{7}{10}
Divide -\frac{75086767}{1000000}+\frac{\sqrt{53633405}}{500} by -\frac{10726681}{100000} by multiplying -\frac{75086767}{1000000}+\frac{\sqrt{53633405}}{500} by the reciprocal of -\frac{10726681}{100000}.
y=\frac{-\frac{\sqrt{53633405}}{500}-\frac{75086767}{1000000}}{-\frac{10726681}{100000}}
Now solve the equation y=\frac{-\frac{75086767}{1000000}±\frac{\sqrt{53633405}}{500}}{-\frac{10726681}{100000}} when ± is minus. Subtract \frac{\sqrt{53633405}}{500} from -\frac{75086767}{1000000}.
y=\frac{200\sqrt{53633405}}{10726681}+\frac{7}{10}
Divide -\frac{75086767}{1000000}-\frac{\sqrt{53633405}}{500} by -\frac{10726681}{100000} by multiplying -\frac{75086767}{1000000}-\frac{\sqrt{53633405}}{500} by the reciprocal of -\frac{10726681}{100000}.
y=-\frac{200\sqrt{53633405}}{10726681}+\frac{7}{10} y=\frac{200\sqrt{53633405}}{10726681}+\frac{7}{10}
The equation is now solved.
6-\left(2000\times 2+1\right)\times 350\times 3.83\times 10^{-7}\times 100\left(y-0.7\right)^{2}=5
Multiply both sides of the equation by 2.
6-\left(4000+1\right)\times 350\times 3.83\times 10^{-7}\times 100\left(y-0.7\right)^{2}=5
Multiply 2000 and 2 to get 4000.
6-4001\times 350\times 3.83\times 10^{-7}\times 100\left(y-0.7\right)^{2}=5
Add 4000 and 1 to get 4001.
6-1400350\times 3.83\times 10^{-7}\times 100\left(y-0.7\right)^{2}=5
Multiply 4001 and 350 to get 1400350.
6-5363340.5\times 10^{-7}\times 100\left(y-0.7\right)^{2}=5
Multiply 1400350 and 3.83 to get 5363340.5.
6-5363340.5\times \frac{1}{10000000}\times 100\left(y-0.7\right)^{2}=5
Calculate 10 to the power of -7 and get \frac{1}{10000000}.
6-\frac{10726681}{20000000}\times 100\left(y-0.7\right)^{2}=5
Multiply 5363340.5 and \frac{1}{10000000} to get \frac{10726681}{20000000}.
6-\frac{10726681}{200000}\left(y-0.7\right)^{2}=5
Multiply \frac{10726681}{20000000} and 100 to get \frac{10726681}{200000}.
6-\frac{10726681}{200000}\left(y^{2}-1.4y+0.49\right)=5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-0.7\right)^{2}.
6-\frac{10726681}{200000}y^{2}+\frac{75086767}{1000000}y-\frac{525607369}{20000000}=5
Use the distributive property to multiply -\frac{10726681}{200000} by y^{2}-1.4y+0.49.
-\frac{405607369}{20000000}-\frac{10726681}{200000}y^{2}+\frac{75086767}{1000000}y=5
Subtract \frac{525607369}{20000000} from 6 to get -\frac{405607369}{20000000}.
-\frac{10726681}{200000}y^{2}+\frac{75086767}{1000000}y=5+\frac{405607369}{20000000}
Add \frac{405607369}{20000000} to both sides.
-\frac{10726681}{200000}y^{2}+\frac{75086767}{1000000}y=\frac{505607369}{20000000}
Add 5 and \frac{405607369}{20000000} to get \frac{505607369}{20000000}.
\frac{-\frac{10726681}{200000}y^{2}+\frac{75086767}{1000000}y}{-\frac{10726681}{200000}}=\frac{\frac{505607369}{20000000}}{-\frac{10726681}{200000}}
Divide both sides of the equation by -\frac{10726681}{200000}, which is the same as multiplying both sides by the reciprocal of the fraction.
y^{2}+\frac{\frac{75086767}{1000000}}{-\frac{10726681}{200000}}y=\frac{\frac{505607369}{20000000}}{-\frac{10726681}{200000}}
Dividing by -\frac{10726681}{200000} undoes the multiplication by -\frac{10726681}{200000}.
y^{2}-\frac{7}{5}y=\frac{\frac{505607369}{20000000}}{-\frac{10726681}{200000}}
Divide \frac{75086767}{1000000} by -\frac{10726681}{200000} by multiplying \frac{75086767}{1000000} by the reciprocal of -\frac{10726681}{200000}.
y^{2}-\frac{7}{5}y=-\frac{505607369}{1072668100}
Divide \frac{505607369}{20000000} by -\frac{10726681}{200000} by multiplying \frac{505607369}{20000000} by the reciprocal of -\frac{10726681}{200000}.
y^{2}-\frac{7}{5}y+\left(-\frac{7}{10}\right)^{2}=-\frac{505607369}{1072668100}+\left(-\frac{7}{10}\right)^{2}
Divide -\frac{7}{5}, the coefficient of the x term, by 2 to get -\frac{7}{10}. Then add the square of -\frac{7}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{7}{5}y+\frac{49}{100}=-\frac{505607369}{1072668100}+\frac{49}{100}
Square -\frac{7}{10} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{7}{5}y+\frac{49}{100}=\frac{200000}{10726681}
Add -\frac{505607369}{1072668100} to \frac{49}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{7}{10}\right)^{2}=\frac{200000}{10726681}
Factor y^{2}-\frac{7}{5}y+\frac{49}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{7}{10}\right)^{2}}=\sqrt{\frac{200000}{10726681}}
Take the square root of both sides of the equation.
y-\frac{7}{10}=\frac{200\sqrt{53633405}}{10726681} y-\frac{7}{10}=-\frac{200\sqrt{53633405}}{10726681}
Simplify.
y=\frac{200\sqrt{53633405}}{10726681}+\frac{7}{10} y=-\frac{200\sqrt{53633405}}{10726681}+\frac{7}{10}
Add \frac{7}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}