Evaluate
9+8i
Real Part
9
Share
Copied to clipboard
3-\left(2i\left(-4\right)+2\times 3i^{2}\right)
Multiply 2i times -4+3i.
3-\left(2i\left(-4\right)+2\times 3\left(-1\right)\right)
By definition, i^{2} is -1.
3-\left(-6-8i\right)
Do the multiplications in 2i\left(-4\right)+2\times 3\left(-1\right). Reorder the terms.
3+\left(6+8i\right)
The opposite of -6-8i is 6+8i.
3+6+8i
Combine the real and imaginary parts in numbers 3 and 6+8i.
9+8i
Add 3 to 6.
Re(3-\left(2i\left(-4\right)+2\times 3i^{2}\right))
Multiply 2i times -4+3i.
Re(3-\left(2i\left(-4\right)+2\times 3\left(-1\right)\right))
By definition, i^{2} is -1.
Re(3-\left(-6-8i\right))
Do the multiplications in 2i\left(-4\right)+2\times 3\left(-1\right). Reorder the terms.
Re(3+\left(6+8i\right))
The opposite of -6-8i is 6+8i.
Re(3+6+8i)
Combine the real and imaginary parts in numbers 3 and 6+8i.
Re(9+8i)
Add 3 to 6.
9
The real part of 9+8i is 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}