Evaluate
\frac{205}{48}\approx 4.270833333
Factor
\frac{5 \cdot 41}{2 ^ {4} \cdot 3} = 4\frac{13}{48} = 4.270833333333333
Share
Copied to clipboard
3-\left(\frac{1}{2}+\frac{1\times 1}{4\times 4}\right)+2\left(\frac{3}{4}+\frac{1}{6}\right)
Multiply \frac{1}{4} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
3-\left(\frac{1}{2}+\frac{1}{16}\right)+2\left(\frac{3}{4}+\frac{1}{6}\right)
Do the multiplications in the fraction \frac{1\times 1}{4\times 4}.
3-\left(\frac{8}{16}+\frac{1}{16}\right)+2\left(\frac{3}{4}+\frac{1}{6}\right)
Least common multiple of 2 and 16 is 16. Convert \frac{1}{2} and \frac{1}{16} to fractions with denominator 16.
3-\frac{8+1}{16}+2\left(\frac{3}{4}+\frac{1}{6}\right)
Since \frac{8}{16} and \frac{1}{16} have the same denominator, add them by adding their numerators.
3-\frac{9}{16}+2\left(\frac{3}{4}+\frac{1}{6}\right)
Add 8 and 1 to get 9.
\frac{48}{16}-\frac{9}{16}+2\left(\frac{3}{4}+\frac{1}{6}\right)
Convert 3 to fraction \frac{48}{16}.
\frac{48-9}{16}+2\left(\frac{3}{4}+\frac{1}{6}\right)
Since \frac{48}{16} and \frac{9}{16} have the same denominator, subtract them by subtracting their numerators.
\frac{39}{16}+2\left(\frac{3}{4}+\frac{1}{6}\right)
Subtract 9 from 48 to get 39.
\frac{39}{16}+2\left(\frac{9}{12}+\frac{2}{12}\right)
Least common multiple of 4 and 6 is 12. Convert \frac{3}{4} and \frac{1}{6} to fractions with denominator 12.
\frac{39}{16}+2\times \frac{9+2}{12}
Since \frac{9}{12} and \frac{2}{12} have the same denominator, add them by adding their numerators.
\frac{39}{16}+2\times \frac{11}{12}
Add 9 and 2 to get 11.
\frac{39}{16}+\frac{2\times 11}{12}
Express 2\times \frac{11}{12} as a single fraction.
\frac{39}{16}+\frac{22}{12}
Multiply 2 and 11 to get 22.
\frac{39}{16}+\frac{11}{6}
Reduce the fraction \frac{22}{12} to lowest terms by extracting and canceling out 2.
\frac{117}{48}+\frac{88}{48}
Least common multiple of 16 and 6 is 48. Convert \frac{39}{16} and \frac{11}{6} to fractions with denominator 48.
\frac{117+88}{48}
Since \frac{117}{48} and \frac{88}{48} have the same denominator, add them by adding their numerators.
\frac{205}{48}
Add 117 and 88 to get 205.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}