Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3-\frac{\sqrt{2}\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}
Rationalize the denominator of \frac{\sqrt{2}}{1-\sqrt{5}} by multiplying numerator and denominator by 1+\sqrt{5}.
3-\frac{\sqrt{2}\left(1+\sqrt{5}\right)}{1^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3-\frac{\sqrt{2}\left(1+\sqrt{5}\right)}{1-5}
Square 1. Square \sqrt{5}.
3-\frac{\sqrt{2}\left(1+\sqrt{5}\right)}{-4}
Subtract 5 from 1 to get -4.
3-\frac{\sqrt{2}+\sqrt{2}\sqrt{5}}{-4}
Use the distributive property to multiply \sqrt{2} by 1+\sqrt{5}.
3-\frac{\sqrt{2}+\sqrt{10}}{-4}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
3-\frac{-\sqrt{2}-\sqrt{10}}{4}
Multiply both numerator and denominator by -1.
\frac{3\times 4}{4}-\frac{-\sqrt{2}-\sqrt{10}}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{4}{4}.
\frac{3\times 4-\left(-\sqrt{2}-\sqrt{10}\right)}{4}
Since \frac{3\times 4}{4} and \frac{-\sqrt{2}-\sqrt{10}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{12+\sqrt{2}+\sqrt{10}}{4}
Do the multiplications in 3\times 4-\left(-\sqrt{2}-\sqrt{10}\right).