Solve for x
x=\frac{4y+17}{3}
Solve for y
y=\frac{3x-17}{4}
Graph
Share
Copied to clipboard
3x-9-4\left(y+2\right)=0
Use the distributive property to multiply 3 by x-3.
3x-9-4y-8=0
Use the distributive property to multiply -4 by y+2.
3x-17-4y=0
Subtract 8 from -9 to get -17.
3x-4y=17
Add 17 to both sides. Anything plus zero gives itself.
3x=17+4y
Add 4y to both sides.
3x=4y+17
The equation is in standard form.
\frac{3x}{3}=\frac{4y+17}{3}
Divide both sides by 3.
x=\frac{4y+17}{3}
Dividing by 3 undoes the multiplication by 3.
3x-9-4\left(y+2\right)=0
Use the distributive property to multiply 3 by x-3.
3x-9-4y-8=0
Use the distributive property to multiply -4 by y+2.
3x-17-4y=0
Subtract 8 from -9 to get -17.
-17-4y=-3x
Subtract 3x from both sides. Anything subtracted from zero gives its negation.
-4y=-3x+17
Add 17 to both sides.
-4y=17-3x
The equation is in standard form.
\frac{-4y}{-4}=\frac{17-3x}{-4}
Divide both sides by -4.
y=\frac{17-3x}{-4}
Dividing by -4 undoes the multiplication by -4.
y=\frac{3x-17}{4}
Divide -3x+17 by -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}