Solve for x
x=6
x=3
Graph
Share
Copied to clipboard
3x-9=\left(x-3\right)^{2}
Use the distributive property to multiply 3 by x-3.
3x-9=x^{2}-6x+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
3x-9-x^{2}=-6x+9
Subtract x^{2} from both sides.
3x-9-x^{2}+6x=9
Add 6x to both sides.
9x-9-x^{2}=9
Combine 3x and 6x to get 9x.
9x-9-x^{2}-9=0
Subtract 9 from both sides.
9x-18-x^{2}=0
Subtract 9 from -9 to get -18.
-x^{2}+9x-18=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=9 ab=-\left(-18\right)=18
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-18. To find a and b, set up a system to be solved.
1,18 2,9 3,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 18.
1+18=19 2+9=11 3+6=9
Calculate the sum for each pair.
a=6 b=3
The solution is the pair that gives sum 9.
\left(-x^{2}+6x\right)+\left(3x-18\right)
Rewrite -x^{2}+9x-18 as \left(-x^{2}+6x\right)+\left(3x-18\right).
-x\left(x-6\right)+3\left(x-6\right)
Factor out -x in the first and 3 in the second group.
\left(x-6\right)\left(-x+3\right)
Factor out common term x-6 by using distributive property.
x=6 x=3
To find equation solutions, solve x-6=0 and -x+3=0.
3x-9=\left(x-3\right)^{2}
Use the distributive property to multiply 3 by x-3.
3x-9=x^{2}-6x+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
3x-9-x^{2}=-6x+9
Subtract x^{2} from both sides.
3x-9-x^{2}+6x=9
Add 6x to both sides.
9x-9-x^{2}=9
Combine 3x and 6x to get 9x.
9x-9-x^{2}-9=0
Subtract 9 from both sides.
9x-18-x^{2}=0
Subtract 9 from -9 to get -18.
-x^{2}+9x-18=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9±\sqrt{9^{2}-4\left(-1\right)\left(-18\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 9 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\left(-1\right)\left(-18\right)}}{2\left(-1\right)}
Square 9.
x=\frac{-9±\sqrt{81+4\left(-18\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-9±\sqrt{81-72}}{2\left(-1\right)}
Multiply 4 times -18.
x=\frac{-9±\sqrt{9}}{2\left(-1\right)}
Add 81 to -72.
x=\frac{-9±3}{2\left(-1\right)}
Take the square root of 9.
x=\frac{-9±3}{-2}
Multiply 2 times -1.
x=-\frac{6}{-2}
Now solve the equation x=\frac{-9±3}{-2} when ± is plus. Add -9 to 3.
x=3
Divide -6 by -2.
x=-\frac{12}{-2}
Now solve the equation x=\frac{-9±3}{-2} when ± is minus. Subtract 3 from -9.
x=6
Divide -12 by -2.
x=3 x=6
The equation is now solved.
3x-9=\left(x-3\right)^{2}
Use the distributive property to multiply 3 by x-3.
3x-9=x^{2}-6x+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
3x-9-x^{2}=-6x+9
Subtract x^{2} from both sides.
3x-9-x^{2}+6x=9
Add 6x to both sides.
9x-9-x^{2}=9
Combine 3x and 6x to get 9x.
9x-x^{2}=9+9
Add 9 to both sides.
9x-x^{2}=18
Add 9 and 9 to get 18.
-x^{2}+9x=18
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+9x}{-1}=\frac{18}{-1}
Divide both sides by -1.
x^{2}+\frac{9}{-1}x=\frac{18}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-9x=\frac{18}{-1}
Divide 9 by -1.
x^{2}-9x=-18
Divide 18 by -1.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-18+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-9x+\frac{81}{4}=-18+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-9x+\frac{81}{4}=\frac{9}{4}
Add -18 to \frac{81}{4}.
\left(x-\frac{9}{2}\right)^{2}=\frac{9}{4}
Factor x^{2}-9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
x-\frac{9}{2}=\frac{3}{2} x-\frac{9}{2}=-\frac{3}{2}
Simplify.
x=6 x=3
Add \frac{9}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}