Solve for x
x=\frac{\sqrt{177}}{6}+\frac{3}{2}\approx 3.717355783
x=-\frac{\sqrt{177}}{6}+\frac{3}{2}\approx -0.717355783
Graph
Share
Copied to clipboard
\left(3x+6\right)\left(x-2\right)=x-4+8x
Use the distributive property to multiply 3 by x+2.
3x^{2}-12=x-4+8x
Use the distributive property to multiply 3x+6 by x-2 and combine like terms.
3x^{2}-12=9x-4
Combine x and 8x to get 9x.
3x^{2}-12-9x=-4
Subtract 9x from both sides.
3x^{2}-12-9x+4=0
Add 4 to both sides.
3x^{2}-8-9x=0
Add -12 and 4 to get -8.
3x^{2}-9x-8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 3\left(-8\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -9 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 3\left(-8\right)}}{2\times 3}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81-12\left(-8\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-9\right)±\sqrt{81+96}}{2\times 3}
Multiply -12 times -8.
x=\frac{-\left(-9\right)±\sqrt{177}}{2\times 3}
Add 81 to 96.
x=\frac{9±\sqrt{177}}{2\times 3}
The opposite of -9 is 9.
x=\frac{9±\sqrt{177}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{177}+9}{6}
Now solve the equation x=\frac{9±\sqrt{177}}{6} when ± is plus. Add 9 to \sqrt{177}.
x=\frac{\sqrt{177}}{6}+\frac{3}{2}
Divide 9+\sqrt{177} by 6.
x=\frac{9-\sqrt{177}}{6}
Now solve the equation x=\frac{9±\sqrt{177}}{6} when ± is minus. Subtract \sqrt{177} from 9.
x=-\frac{\sqrt{177}}{6}+\frac{3}{2}
Divide 9-\sqrt{177} by 6.
x=\frac{\sqrt{177}}{6}+\frac{3}{2} x=-\frac{\sqrt{177}}{6}+\frac{3}{2}
The equation is now solved.
\left(3x+6\right)\left(x-2\right)=x-4+8x
Use the distributive property to multiply 3 by x+2.
3x^{2}-12=x-4+8x
Use the distributive property to multiply 3x+6 by x-2 and combine like terms.
3x^{2}-12=9x-4
Combine x and 8x to get 9x.
3x^{2}-12-9x=-4
Subtract 9x from both sides.
3x^{2}-9x=-4+12
Add 12 to both sides.
3x^{2}-9x=8
Add -4 and 12 to get 8.
\frac{3x^{2}-9x}{3}=\frac{8}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{9}{3}\right)x=\frac{8}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-3x=\frac{8}{3}
Divide -9 by 3.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\frac{8}{3}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=\frac{8}{3}+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{59}{12}
Add \frac{8}{3} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{2}\right)^{2}=\frac{59}{12}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{59}{12}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{177}}{6} x-\frac{3}{2}=-\frac{\sqrt{177}}{6}
Simplify.
x=\frac{\sqrt{177}}{6}+\frac{3}{2} x=-\frac{\sqrt{177}}{6}+\frac{3}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}