Solve for b
b=-\frac{x}{36}+\frac{11}{6}
Solve for x
x=66-36b
Graph
Share
Copied to clipboard
3b\times 12-3+x=5\times 12+3
Use the distributive property to multiply 3 by b\times 12-1.
36b-3+x=5\times 12+3
Multiply 3 and 12 to get 36.
36b-3+x=60+3
Multiply 5 and 12 to get 60.
36b-3+x=63
Add 60 and 3 to get 63.
36b+x=63+3
Add 3 to both sides.
36b+x=66
Add 63 and 3 to get 66.
36b=66-x
Subtract x from both sides.
\frac{36b}{36}=\frac{66-x}{36}
Divide both sides by 36.
b=\frac{66-x}{36}
Dividing by 36 undoes the multiplication by 36.
b=-\frac{x}{36}+\frac{11}{6}
Divide 66-x by 36.
3b\times 12-3+x=5\times 12+3
Use the distributive property to multiply 3 by b\times 12-1.
36b-3+x=5\times 12+3
Multiply 3 and 12 to get 36.
36b-3+x=60+3
Multiply 5 and 12 to get 60.
36b-3+x=63
Add 60 and 3 to get 63.
-3+x=63-36b
Subtract 36b from both sides.
x=63-36b+3
Add 3 to both sides.
x=66-36b
Add 63 and 3 to get 66.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}