Evaluate
\frac{26}{3}\approx 8.666666667
Factor
\frac{2 \cdot 13}{3} = 8\frac{2}{3} = 8.666666666666666
Share
Copied to clipboard
3\left(4+\frac{5}{3}\right)+5\left(-\frac{5}{3}\right)
The opposite of -\frac{5}{3} is \frac{5}{3}.
3\left(\frac{12}{3}+\frac{5}{3}\right)+5\left(-\frac{5}{3}\right)
Convert 4 to fraction \frac{12}{3}.
3\times \frac{12+5}{3}+5\left(-\frac{5}{3}\right)
Since \frac{12}{3} and \frac{5}{3} have the same denominator, add them by adding their numerators.
3\times \frac{17}{3}+5\left(-\frac{5}{3}\right)
Add 12 and 5 to get 17.
17+5\left(-\frac{5}{3}\right)
Cancel out 3 and 3.
17+\frac{5\left(-5\right)}{3}
Express 5\left(-\frac{5}{3}\right) as a single fraction.
17+\frac{-25}{3}
Multiply 5 and -5 to get -25.
17-\frac{25}{3}
Fraction \frac{-25}{3} can be rewritten as -\frac{25}{3} by extracting the negative sign.
\frac{51}{3}-\frac{25}{3}
Convert 17 to fraction \frac{51}{3}.
\frac{51-25}{3}
Since \frac{51}{3} and \frac{25}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{26}{3}
Subtract 25 from 51 to get 26.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}