3,5 - 3 : ( 5 \frac { 2 } { 3 } - 4,8 )
Evaluate
\frac{1}{26}\approx 0,038461538
Factor
\frac{1}{2 \cdot 13} = 0.038461538461538464
Share
Copied to clipboard
3,5-\frac{3}{\frac{15+2}{3}-4,8}
Multiply 5 and 3 to get 15.
3,5-\frac{3}{\frac{17}{3}-4,8}
Add 15 and 2 to get 17.
3,5-\frac{3}{\frac{17}{3}-\frac{24}{5}}
Convert decimal number 4,8 to fraction \frac{48}{10}. Reduce the fraction \frac{48}{10} to lowest terms by extracting and canceling out 2.
3,5-\frac{3}{\frac{85}{15}-\frac{72}{15}}
Least common multiple of 3 and 5 is 15. Convert \frac{17}{3} and \frac{24}{5} to fractions with denominator 15.
3,5-\frac{3}{\frac{85-72}{15}}
Since \frac{85}{15} and \frac{72}{15} have the same denominator, subtract them by subtracting their numerators.
3,5-\frac{3}{\frac{13}{15}}
Subtract 72 from 85 to get 13.
3,5-3\times \frac{15}{13}
Divide 3 by \frac{13}{15} by multiplying 3 by the reciprocal of \frac{13}{15}.
3,5-\frac{3\times 15}{13}
Express 3\times \frac{15}{13} as a single fraction.
3,5-\frac{45}{13}
Multiply 3 and 15 to get 45.
\frac{7}{2}-\frac{45}{13}
Convert decimal number 3,5 to fraction \frac{35}{10}. Reduce the fraction \frac{35}{10} to lowest terms by extracting and canceling out 5.
\frac{91}{26}-\frac{90}{26}
Least common multiple of 2 and 13 is 26. Convert \frac{7}{2} and \frac{45}{13} to fractions with denominator 26.
\frac{91-90}{26}
Since \frac{91}{26} and \frac{90}{26} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{26}
Subtract 90 from 91 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}