Solve for x (complex solution)
x=\frac{9\sqrt{231}i}{77}-2\approx -2+1.776469576i
x=-\frac{9\sqrt{231}i}{77}-2\approx -2-1.776469576i
Graph
Share
Copied to clipboard
3+x^{2}+4x+4=\left(\frac{2x+4}{9}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
7+x^{2}+4x=\left(\frac{2x+4}{9}\right)^{2}
Add 3 and 4 to get 7.
7+x^{2}+4x=\frac{\left(2x+4\right)^{2}}{9^{2}}
To raise \frac{2x+4}{9} to a power, raise both numerator and denominator to the power and then divide.
7+x^{2}+4x=\frac{4x^{2}+16x+16}{9^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+4\right)^{2}.
7+x^{2}+4x=\frac{4x^{2}+16x+16}{81}
Calculate 9 to the power of 2 and get 81.
7+x^{2}+4x=\frac{4}{81}x^{2}+\frac{16}{81}x+\frac{16}{81}
Divide each term of 4x^{2}+16x+16 by 81 to get \frac{4}{81}x^{2}+\frac{16}{81}x+\frac{16}{81}.
7+x^{2}+4x-\frac{4}{81}x^{2}=\frac{16}{81}x+\frac{16}{81}
Subtract \frac{4}{81}x^{2} from both sides.
7+\frac{77}{81}x^{2}+4x=\frac{16}{81}x+\frac{16}{81}
Combine x^{2} and -\frac{4}{81}x^{2} to get \frac{77}{81}x^{2}.
7+\frac{77}{81}x^{2}+4x-\frac{16}{81}x=\frac{16}{81}
Subtract \frac{16}{81}x from both sides.
7+\frac{77}{81}x^{2}+\frac{308}{81}x=\frac{16}{81}
Combine 4x and -\frac{16}{81}x to get \frac{308}{81}x.
7+\frac{77}{81}x^{2}+\frac{308}{81}x-\frac{16}{81}=0
Subtract \frac{16}{81} from both sides.
\frac{551}{81}+\frac{77}{81}x^{2}+\frac{308}{81}x=0
Subtract \frac{16}{81} from 7 to get \frac{551}{81}.
\frac{77}{81}x^{2}+\frac{308}{81}x+\frac{551}{81}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{308}{81}±\sqrt{\left(\frac{308}{81}\right)^{2}-4\times \frac{77}{81}\times \frac{551}{81}}}{2\times \frac{77}{81}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{77}{81} for a, \frac{308}{81} for b, and \frac{551}{81} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{308}{81}±\sqrt{\frac{94864}{6561}-4\times \frac{77}{81}\times \frac{551}{81}}}{2\times \frac{77}{81}}
Square \frac{308}{81} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{308}{81}±\sqrt{\frac{94864}{6561}-\frac{308}{81}\times \frac{551}{81}}}{2\times \frac{77}{81}}
Multiply -4 times \frac{77}{81}.
x=\frac{-\frac{308}{81}±\sqrt{\frac{94864-169708}{6561}}}{2\times \frac{77}{81}}
Multiply -\frac{308}{81} times \frac{551}{81} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{308}{81}±\sqrt{-\frac{308}{27}}}{2\times \frac{77}{81}}
Add \frac{94864}{6561} to -\frac{169708}{6561} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{308}{81}±\frac{2\sqrt{231}i}{9}}{2\times \frac{77}{81}}
Take the square root of -\frac{308}{27}.
x=\frac{-\frac{308}{81}±\frac{2\sqrt{231}i}{9}}{\frac{154}{81}}
Multiply 2 times \frac{77}{81}.
x=\frac{\frac{2\sqrt{231}i}{9}-\frac{308}{81}}{\frac{154}{81}}
Now solve the equation x=\frac{-\frac{308}{81}±\frac{2\sqrt{231}i}{9}}{\frac{154}{81}} when ± is plus. Add -\frac{308}{81} to \frac{2i\sqrt{231}}{9}.
x=\frac{9\sqrt{231}i}{77}-2
Divide -\frac{308}{81}+\frac{2i\sqrt{231}}{9} by \frac{154}{81} by multiplying -\frac{308}{81}+\frac{2i\sqrt{231}}{9} by the reciprocal of \frac{154}{81}.
x=\frac{-\frac{2\sqrt{231}i}{9}-\frac{308}{81}}{\frac{154}{81}}
Now solve the equation x=\frac{-\frac{308}{81}±\frac{2\sqrt{231}i}{9}}{\frac{154}{81}} when ± is minus. Subtract \frac{2i\sqrt{231}}{9} from -\frac{308}{81}.
x=-\frac{9\sqrt{231}i}{77}-2
Divide -\frac{308}{81}-\frac{2i\sqrt{231}}{9} by \frac{154}{81} by multiplying -\frac{308}{81}-\frac{2i\sqrt{231}}{9} by the reciprocal of \frac{154}{81}.
x=\frac{9\sqrt{231}i}{77}-2 x=-\frac{9\sqrt{231}i}{77}-2
The equation is now solved.
3+x^{2}+4x+4=\left(\frac{2x+4}{9}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
7+x^{2}+4x=\left(\frac{2x+4}{9}\right)^{2}
Add 3 and 4 to get 7.
7+x^{2}+4x=\frac{\left(2x+4\right)^{2}}{9^{2}}
To raise \frac{2x+4}{9} to a power, raise both numerator and denominator to the power and then divide.
7+x^{2}+4x=\frac{4x^{2}+16x+16}{9^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+4\right)^{2}.
7+x^{2}+4x=\frac{4x^{2}+16x+16}{81}
Calculate 9 to the power of 2 and get 81.
7+x^{2}+4x=\frac{4}{81}x^{2}+\frac{16}{81}x+\frac{16}{81}
Divide each term of 4x^{2}+16x+16 by 81 to get \frac{4}{81}x^{2}+\frac{16}{81}x+\frac{16}{81}.
7+x^{2}+4x-\frac{4}{81}x^{2}=\frac{16}{81}x+\frac{16}{81}
Subtract \frac{4}{81}x^{2} from both sides.
7+\frac{77}{81}x^{2}+4x=\frac{16}{81}x+\frac{16}{81}
Combine x^{2} and -\frac{4}{81}x^{2} to get \frac{77}{81}x^{2}.
7+\frac{77}{81}x^{2}+4x-\frac{16}{81}x=\frac{16}{81}
Subtract \frac{16}{81}x from both sides.
7+\frac{77}{81}x^{2}+\frac{308}{81}x=\frac{16}{81}
Combine 4x and -\frac{16}{81}x to get \frac{308}{81}x.
\frac{77}{81}x^{2}+\frac{308}{81}x=\frac{16}{81}-7
Subtract 7 from both sides.
\frac{77}{81}x^{2}+\frac{308}{81}x=-\frac{551}{81}
Subtract 7 from \frac{16}{81} to get -\frac{551}{81}.
\frac{\frac{77}{81}x^{2}+\frac{308}{81}x}{\frac{77}{81}}=-\frac{\frac{551}{81}}{\frac{77}{81}}
Divide both sides of the equation by \frac{77}{81}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{308}{81}}{\frac{77}{81}}x=-\frac{\frac{551}{81}}{\frac{77}{81}}
Dividing by \frac{77}{81} undoes the multiplication by \frac{77}{81}.
x^{2}+4x=-\frac{\frac{551}{81}}{\frac{77}{81}}
Divide \frac{308}{81} by \frac{77}{81} by multiplying \frac{308}{81} by the reciprocal of \frac{77}{81}.
x^{2}+4x=-\frac{551}{77}
Divide -\frac{551}{81} by \frac{77}{81} by multiplying -\frac{551}{81} by the reciprocal of \frac{77}{81}.
x^{2}+4x+2^{2}=-\frac{551}{77}+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=-\frac{551}{77}+4
Square 2.
x^{2}+4x+4=-\frac{243}{77}
Add -\frac{551}{77} to 4.
\left(x+2\right)^{2}=-\frac{243}{77}
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{-\frac{243}{77}}
Take the square root of both sides of the equation.
x+2=\frac{9\sqrt{231}i}{77} x+2=-\frac{9\sqrt{231}i}{77}
Simplify.
x=\frac{9\sqrt{231}i}{77}-2 x=-\frac{9\sqrt{231}i}{77}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}