Evaluate
\frac{989}{315}\approx 3.13968254
Factor
\frac{23 \cdot 43}{3 ^ {2} \cdot 5 \cdot 7} = 3\frac{44}{315} = 3.1396825396825396
Share
Copied to clipboard
3+\frac{4}{6\times 4}-\frac{4}{4\times 5\times 6}+\frac{4}{6\times 7\times 8}-\frac{4}{8\times 9\times 10}
Multiply 2 and 3 to get 6.
3+\frac{4}{24}-\frac{4}{4\times 5\times 6}+\frac{4}{6\times 7\times 8}-\frac{4}{8\times 9\times 10}
Multiply 6 and 4 to get 24.
3+\frac{1}{6}-\frac{4}{4\times 5\times 6}+\frac{4}{6\times 7\times 8}-\frac{4}{8\times 9\times 10}
Reduce the fraction \frac{4}{24} to lowest terms by extracting and canceling out 4.
\frac{18}{6}+\frac{1}{6}-\frac{4}{4\times 5\times 6}+\frac{4}{6\times 7\times 8}-\frac{4}{8\times 9\times 10}
Convert 3 to fraction \frac{18}{6}.
\frac{18+1}{6}-\frac{4}{4\times 5\times 6}+\frac{4}{6\times 7\times 8}-\frac{4}{8\times 9\times 10}
Since \frac{18}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
\frac{19}{6}-\frac{4}{4\times 5\times 6}+\frac{4}{6\times 7\times 8}-\frac{4}{8\times 9\times 10}
Add 18 and 1 to get 19.
\frac{19}{6}-\frac{4}{20\times 6}+\frac{4}{6\times 7\times 8}-\frac{4}{8\times 9\times 10}
Multiply 4 and 5 to get 20.
\frac{19}{6}-\frac{4}{120}+\frac{4}{6\times 7\times 8}-\frac{4}{8\times 9\times 10}
Multiply 20 and 6 to get 120.
\frac{19}{6}-\frac{1}{30}+\frac{4}{6\times 7\times 8}-\frac{4}{8\times 9\times 10}
Reduce the fraction \frac{4}{120} to lowest terms by extracting and canceling out 4.
\frac{95}{30}-\frac{1}{30}+\frac{4}{6\times 7\times 8}-\frac{4}{8\times 9\times 10}
Least common multiple of 6 and 30 is 30. Convert \frac{19}{6} and \frac{1}{30} to fractions with denominator 30.
\frac{95-1}{30}+\frac{4}{6\times 7\times 8}-\frac{4}{8\times 9\times 10}
Since \frac{95}{30} and \frac{1}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{94}{30}+\frac{4}{6\times 7\times 8}-\frac{4}{8\times 9\times 10}
Subtract 1 from 95 to get 94.
\frac{47}{15}+\frac{4}{6\times 7\times 8}-\frac{4}{8\times 9\times 10}
Reduce the fraction \frac{94}{30} to lowest terms by extracting and canceling out 2.
\frac{47}{15}+\frac{4}{42\times 8}-\frac{4}{8\times 9\times 10}
Multiply 6 and 7 to get 42.
\frac{47}{15}+\frac{4}{336}-\frac{4}{8\times 9\times 10}
Multiply 42 and 8 to get 336.
\frac{47}{15}+\frac{1}{84}-\frac{4}{8\times 9\times 10}
Reduce the fraction \frac{4}{336} to lowest terms by extracting and canceling out 4.
\frac{1316}{420}+\frac{5}{420}-\frac{4}{8\times 9\times 10}
Least common multiple of 15 and 84 is 420. Convert \frac{47}{15} and \frac{1}{84} to fractions with denominator 420.
\frac{1316+5}{420}-\frac{4}{8\times 9\times 10}
Since \frac{1316}{420} and \frac{5}{420} have the same denominator, add them by adding their numerators.
\frac{1321}{420}-\frac{4}{8\times 9\times 10}
Add 1316 and 5 to get 1321.
\frac{1321}{420}-\frac{4}{72\times 10}
Multiply 8 and 9 to get 72.
\frac{1321}{420}-\frac{4}{720}
Multiply 72 and 10 to get 720.
\frac{1321}{420}-\frac{1}{180}
Reduce the fraction \frac{4}{720} to lowest terms by extracting and canceling out 4.
\frac{3963}{1260}-\frac{7}{1260}
Least common multiple of 420 and 180 is 1260. Convert \frac{1321}{420} and \frac{1}{180} to fractions with denominator 1260.
\frac{3963-7}{1260}
Since \frac{3963}{1260} and \frac{7}{1260} have the same denominator, subtract them by subtracting their numerators.
\frac{3956}{1260}
Subtract 7 from 3963 to get 3956.
\frac{989}{315}
Reduce the fraction \frac{3956}{1260} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}