Evaluate
\frac{181}{51}\approx 3.549019608
Factor
\frac{181}{3 \cdot 17} = 3\frac{28}{51} = 3.549019607843137
Share
Copied to clipboard
3+\frac{2}{3+\frac{3}{\frac{12}{3}+\frac{2}{3}}}
Convert 4 to fraction \frac{12}{3}.
3+\frac{2}{3+\frac{3}{\frac{12+2}{3}}}
Since \frac{12}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
3+\frac{2}{3+\frac{3}{\frac{14}{3}}}
Add 12 and 2 to get 14.
3+\frac{2}{3+3\times \frac{3}{14}}
Divide 3 by \frac{14}{3} by multiplying 3 by the reciprocal of \frac{14}{3}.
3+\frac{2}{3+\frac{3\times 3}{14}}
Express 3\times \frac{3}{14} as a single fraction.
3+\frac{2}{3+\frac{9}{14}}
Multiply 3 and 3 to get 9.
3+\frac{2}{\frac{42}{14}+\frac{9}{14}}
Convert 3 to fraction \frac{42}{14}.
3+\frac{2}{\frac{42+9}{14}}
Since \frac{42}{14} and \frac{9}{14} have the same denominator, add them by adding their numerators.
3+\frac{2}{\frac{51}{14}}
Add 42 and 9 to get 51.
3+2\times \frac{14}{51}
Divide 2 by \frac{51}{14} by multiplying 2 by the reciprocal of \frac{51}{14}.
3+\frac{2\times 14}{51}
Express 2\times \frac{14}{51} as a single fraction.
3+\frac{28}{51}
Multiply 2 and 14 to get 28.
\frac{153}{51}+\frac{28}{51}
Convert 3 to fraction \frac{153}{51}.
\frac{153+28}{51}
Since \frac{153}{51} and \frac{28}{51} have the same denominator, add them by adding their numerators.
\frac{181}{51}
Add 153 and 28 to get 181.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}