Evaluate
\frac{109}{33}\approx 3.303030303
Factor
\frac{109}{3 \cdot 11} = 3\frac{10}{33} = 3.303030303030303
Share
Copied to clipboard
3+\frac{1}{3+\frac{1}{\frac{9}{3}+\frac{1}{3}}}
Convert 3 to fraction \frac{9}{3}.
3+\frac{1}{3+\frac{1}{\frac{9+1}{3}}}
Since \frac{9}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
3+\frac{1}{3+\frac{1}{\frac{10}{3}}}
Add 9 and 1 to get 10.
3+\frac{1}{3+1\times \frac{3}{10}}
Divide 1 by \frac{10}{3} by multiplying 1 by the reciprocal of \frac{10}{3}.
3+\frac{1}{3+\frac{3}{10}}
Multiply 1 and \frac{3}{10} to get \frac{3}{10}.
3+\frac{1}{\frac{30}{10}+\frac{3}{10}}
Convert 3 to fraction \frac{30}{10}.
3+\frac{1}{\frac{30+3}{10}}
Since \frac{30}{10} and \frac{3}{10} have the same denominator, add them by adding their numerators.
3+\frac{1}{\frac{33}{10}}
Add 30 and 3 to get 33.
3+1\times \frac{10}{33}
Divide 1 by \frac{33}{10} by multiplying 1 by the reciprocal of \frac{33}{10}.
3+\frac{10}{33}
Multiply 1 and \frac{10}{33} to get \frac{10}{33}.
\frac{99}{33}+\frac{10}{33}
Convert 3 to fraction \frac{99}{33}.
\frac{99+10}{33}
Since \frac{99}{33} and \frac{10}{33} have the same denominator, add them by adding their numerators.
\frac{109}{33}
Add 99 and 10 to get 109.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}