Solve for z
z=-4
z=\frac{2}{3}\approx 0.666666667
Share
Copied to clipboard
9z^{2}+30z=24
Use the distributive property to multiply 3z by 3z+10.
9z^{2}+30z-24=0
Subtract 24 from both sides.
z=\frac{-30±\sqrt{30^{2}-4\times 9\left(-24\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 30 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-30±\sqrt{900-4\times 9\left(-24\right)}}{2\times 9}
Square 30.
z=\frac{-30±\sqrt{900-36\left(-24\right)}}{2\times 9}
Multiply -4 times 9.
z=\frac{-30±\sqrt{900+864}}{2\times 9}
Multiply -36 times -24.
z=\frac{-30±\sqrt{1764}}{2\times 9}
Add 900 to 864.
z=\frac{-30±42}{2\times 9}
Take the square root of 1764.
z=\frac{-30±42}{18}
Multiply 2 times 9.
z=\frac{12}{18}
Now solve the equation z=\frac{-30±42}{18} when ± is plus. Add -30 to 42.
z=\frac{2}{3}
Reduce the fraction \frac{12}{18} to lowest terms by extracting and canceling out 6.
z=-\frac{72}{18}
Now solve the equation z=\frac{-30±42}{18} when ± is minus. Subtract 42 from -30.
z=-4
Divide -72 by 18.
z=\frac{2}{3} z=-4
The equation is now solved.
9z^{2}+30z=24
Use the distributive property to multiply 3z by 3z+10.
\frac{9z^{2}+30z}{9}=\frac{24}{9}
Divide both sides by 9.
z^{2}+\frac{30}{9}z=\frac{24}{9}
Dividing by 9 undoes the multiplication by 9.
z^{2}+\frac{10}{3}z=\frac{24}{9}
Reduce the fraction \frac{30}{9} to lowest terms by extracting and canceling out 3.
z^{2}+\frac{10}{3}z=\frac{8}{3}
Reduce the fraction \frac{24}{9} to lowest terms by extracting and canceling out 3.
z^{2}+\frac{10}{3}z+\left(\frac{5}{3}\right)^{2}=\frac{8}{3}+\left(\frac{5}{3}\right)^{2}
Divide \frac{10}{3}, the coefficient of the x term, by 2 to get \frac{5}{3}. Then add the square of \frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}+\frac{10}{3}z+\frac{25}{9}=\frac{8}{3}+\frac{25}{9}
Square \frac{5}{3} by squaring both the numerator and the denominator of the fraction.
z^{2}+\frac{10}{3}z+\frac{25}{9}=\frac{49}{9}
Add \frac{8}{3} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(z+\frac{5}{3}\right)^{2}=\frac{49}{9}
Factor z^{2}+\frac{10}{3}z+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z+\frac{5}{3}\right)^{2}}=\sqrt{\frac{49}{9}}
Take the square root of both sides of the equation.
z+\frac{5}{3}=\frac{7}{3} z+\frac{5}{3}=-\frac{7}{3}
Simplify.
z=\frac{2}{3} z=-4
Subtract \frac{5}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}