Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z^{2}-9=0
Divide both sides by 3.
\left(z-3\right)\left(z+3\right)=0
Consider z^{2}-9. Rewrite z^{2}-9 as z^{2}-3^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
z=3 z=-3
To find equation solutions, solve z-3=0 and z+3=0.
3z^{2}=27
Add 27 to both sides. Anything plus zero gives itself.
z^{2}=\frac{27}{3}
Divide both sides by 3.
z^{2}=9
Divide 27 by 3 to get 9.
z=3 z=-3
Take the square root of both sides of the equation.
3z^{2}-27=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
z=\frac{0±\sqrt{0^{2}-4\times 3\left(-27\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 0 for b, and -27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{0±\sqrt{-4\times 3\left(-27\right)}}{2\times 3}
Square 0.
z=\frac{0±\sqrt{-12\left(-27\right)}}{2\times 3}
Multiply -4 times 3.
z=\frac{0±\sqrt{324}}{2\times 3}
Multiply -12 times -27.
z=\frac{0±18}{2\times 3}
Take the square root of 324.
z=\frac{0±18}{6}
Multiply 2 times 3.
z=3
Now solve the equation z=\frac{0±18}{6} when ± is plus. Divide 18 by 6.
z=-3
Now solve the equation z=\frac{0±18}{6} when ± is minus. Divide -18 by 6.
z=3 z=-3
The equation is now solved.