Solve for z
z = \frac{32 \sqrt{3}}{3} \approx 18.475208614
z = -\frac{32 \sqrt{3}}{3} \approx -18.475208614
Share
Copied to clipboard
z^{2}=\frac{1024}{3}
Divide both sides by 3.
z=\frac{32\sqrt{3}}{3} z=-\frac{32\sqrt{3}}{3}
Take the square root of both sides of the equation.
z^{2}=\frac{1024}{3}
Divide both sides by 3.
z^{2}-\frac{1024}{3}=0
Subtract \frac{1024}{3} from both sides.
z=\frac{0±\sqrt{0^{2}-4\left(-\frac{1024}{3}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{1024}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{0±\sqrt{-4\left(-\frac{1024}{3}\right)}}{2}
Square 0.
z=\frac{0±\sqrt{\frac{4096}{3}}}{2}
Multiply -4 times -\frac{1024}{3}.
z=\frac{0±\frac{64\sqrt{3}}{3}}{2}
Take the square root of \frac{4096}{3}.
z=\frac{32\sqrt{3}}{3}
Now solve the equation z=\frac{0±\frac{64\sqrt{3}}{3}}{2} when ± is plus.
z=-\frac{32\sqrt{3}}{3}
Now solve the equation z=\frac{0±\frac{64\sqrt{3}}{3}}{2} when ± is minus.
z=\frac{32\sqrt{3}}{3} z=-\frac{32\sqrt{3}}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}