Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

z\left(3z+5\right)
Factor out z.
3z^{2}+5z=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
z=\frac{-5±\sqrt{5^{2}}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-5±5}{2\times 3}
Take the square root of 5^{2}.
z=\frac{-5±5}{6}
Multiply 2 times 3.
z=\frac{0}{6}
Now solve the equation z=\frac{-5±5}{6} when ± is plus. Add -5 to 5.
z=0
Divide 0 by 6.
z=-\frac{10}{6}
Now solve the equation z=\frac{-5±5}{6} when ± is minus. Subtract 5 from -5.
z=-\frac{5}{3}
Reduce the fraction \frac{-10}{6} to lowest terms by extracting and canceling out 2.
3z^{2}+5z=3z\left(z-\left(-\frac{5}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{5}{3} for x_{2}.
3z^{2}+5z=3z\left(z+\frac{5}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
3z^{2}+5z=3z\times \frac{3z+5}{3}
Add \frac{5}{3} to z by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
3z^{2}+5z=z\left(3z+5\right)
Cancel out 3, the greatest common factor in 3 and 3.